419 Clinical Trials for Various Conditions
This study is for patients 2-21 years old who have acute leukemia that has not responded well to chemotherapy and will have a bone marrow transplant. This is a pilot (phase 1) study of AMD3100(also called Plerixafor, Mozobil). AMD3100 is given in combination with a standard pre-transplant conditioning regimen (total body irradiation, etoposide and cyclophosphamide). The conditioning regimen is the treatment that is given just before the transplant. This treatment kills leukemia cells as well as healthy bone marrow and immune cells. Researchers want to learn more about how AMD3100 affects acute leukemia cells. Blood and bone marrow samples from study participants will be collected to find out if AMD3100 is making patients' cells more sensitive to the conditioning regimen and to find out how it does this. The first six patients receive three daily doses (240 mcg/kg via IV). If it appears that three doses do not significantly increase the side effects of transplant conditioning, the investigators will give a second group of six patients five daily doses.
The primary objective is to determine the safety and survival of the redirected allogeneic T cells transduced with the anti-CD19 lentiviral vector (referred to as CART-19 cells).
This dose-escalating study is to determine the safety, pharmacokinetics, and preliminary efficacy of venetoclax in combination with navitoclax and chemotherapy in adult and pediatric participants with relapsed/refractory acute lymphoblastic leukemia (ALL) or relapsed/refractory lymphoblastic lymphoma. A safety expansion cohort of approximately 20 patients may be enrolled in addition to the 50 participants in dose-escalation cohort.
The primary objectives of this study are to evaluate the safety and efficacy of brexucabtagene autoleucel (KTE-X19) in pediatric and adolescent participants with relapsed/refractory (r/r) B-precursor acute lymphoblastic leukemia (ALL) or relapsed or refractory (r/r) B-cell non-Hodgkin lymphoma (NHL). As of October 2022, no further patients with acute B-cell Acute Lymphoblastic Leukemia (ALL) will be asked to join the study. The study remains open for recruitment for patients that have B-cell Non Hodgkin Lymphoma (NHL).
This is a Phase I clinical study evaluating the safety and maximum tolerated dose of a novel CAR T-cell product: allogeneic memory (CD45RA- negative) T-cells expressing a CD19-specific CAR 41BBz (CD19-CAR.CD45RA- negative T-cells) for the treatment of patients ≤ 21 years old with relapsed and/ or refractory CD19-positive leukemia. Primary Objective To determine the maximum tolerated dose (MTD) and characterize the safety profile and dose-limiting toxicities (DLTs) of treatment with allogeneic CD19-CAR.CD45RA-negative T-cells in pediatric, adolescent and young adult patients ≤ 21 years of age, with relapsed and/or refractory CD19-positive leukemia. Secondary Objectives * To evaluate the anti-leukemic activity of allogeneic CD19-CAR.CD45RA-negative T-cells. * To determine rates and severity of graft-versus-host-disease (GVHD) after treatment with allogeneic CD19-CAR.CD45RA-negative T-cells. Exploratory Objectives * To study the expansion, persistence and phenotype of allogeneic CD19-CAR.CD45RA-negative T-cells. * To characterize the cytokine profile in the peripheral blood and CSF after treatment with allogeneic CD19-CAR.CD45RA-negative T-cells. * To assess whether allogeneic CD19-CAR.CD45RA-negative T-cells acquire functional versus exhaustion-associated epigenetic programs. * To determine immune reconstitution post treatment, and the clonal structure and endogenous repertoire of allogeneic CD19-CAR.CD45RA-negative T-cells and relate inferred specificity to CAR response profiles. * To characterize incidence and mechanisms of relapse post-therapy with allogeneic CD19-CAR.CD45RA-negative T-cells.
SJCAR19 is a research study seeking to evaluate the use of chimeric antigen receptor (CAR) T cell therapy, a type of cellular therapy, for the treatment of pediatric, adolescent and young adult patients with relapsed or refractory CD19+ acute lymphoblastic leukemia (ALL). CAR therapy combines two of the body's basic disease fighters: antibodies and T Cells. For this type of therapy, peripheral (circulating) immune cells are collected and then undergo a manufacturing process to engineer them to more effectively kill cancer cells. The SJCAR19 product will be manufactured at the St. Jude Children's Research Hospital's Good Manufacturing Practice (GMP) facility. The main purpose of this study is to determine: 1. The largest dose of SJCAR19 that is safe to give, 2. How long SJCAR19 cells last in the body, 3. The side effects of SJCAR19, and 4. Whether or not treatment with SJCAR19 is effective in treating people with refractory or relapsed ALL.
Leukemia cells grow and divide fast and out of control. In normal cells, certain proteins called CDK4 and CDK6 control cell growth. The study drug called palbociclib works by blocking the CDK4 and CDK6 proteins. Palbociclib has been shown to kill leukemia cells in the laboratory and in animal studies. Palbociclib will be added to other chemotherapy drugs, such as dexamethasone, that are known to be effective in treating childhood ALL. This study will be done in two parts: Part 1: Dose Escalation and Part 2: Dose Expansion. The goal of Part 1 of the study is to find the highest tolerable combination of palbociclib and chemotherapy that the investigators can give to patients with leukemia. Once those doses are determined, the investigators will enroll patients on Part 2: Dose Expansion. This phase will enroll additional patients that receive the highest tolerated dose of palbociclib as determined in part 1, in order to better understand the side effects and how effective this treatment approach is. With this research study, the investigators hope to meet the following goals: * To find the highest tolerable dose of palbociclib in combination with chemotherapy that can be given without causing severe side effects; * To learn what kind of side effects palbociclib in combination with chemotherapy may have; and * To learn more about the biology effects of palbociclib on the cells in the participant's body. Up to 40 children, adolescents and young adults will participate in both parts of this study at St. Jude only.
Fatigue is a major problem in children, adolescents and adults receiving intensive chemotherapy for cancer and in patients undergoing hematopoietic stem cell transplantation (HSCT). Guidelines from the National Comprehensive Cancer Network suggest that all patients, including children as young as 5 years of age, should be routinely screened for fatigue at the initial visit and at regular intervals throughout and following anti-cancer treatment. These guidelines also suggest that fatigue should be managed according to clinical practice guidelines. However, evidence demonstrating effective interventions for fatigue in children with cancer is scarce. Exercise is an effective intervention for cancer-related fatigue in patients of all ages. However, patients receiving the most intensive treatments may be too ill to participate in a standardized exercise program. A unique and potentially effective intervention that combines exercise and relaxation is yoga. This randomized controlled trial (RCT) will determine whether a 3 week program of individualized yoga is associated with less fatigue, better quality of life (QoL) and less systemic opioid use compared to the control program of an Apple tablet (iPad) games, music, movies or books. This is a multi-center, parallel-group, randomized trial of individualized yoga for fatigue. Subjects are inpatients 8-18 years of age receiving intensive chemotherapy for cancer or undergoing HSCT who are expected to remain in hospital for 3 weeks. Participants will be randomized to the individualized yoga program or to the iPad activity control program. For those who remain hospitalized on day 21, the alternate intervention will be offered for 1 week and the preferred strategy will be determined. Yoga has the potential to significantly reduce fatigue, a prevalent and distressing symptom, in children with cancer and HSCT. The investigators have assembled the optimal team with the expertise and track record to accomplish this important trial. This trial is an incremental and critically important step in a program of research designed to improve health for children at the highest risk for poor quality of life. Results may have broad applicability to other hospitalized pediatric populations and has the potential to change in-hospital care for these patients.
This trial is evaluating the safety and tolerability of venetoclax with chemotherapy in pediatric and young adult patients with hematologic malignancies, including myelodysplastic syndrome (MDS), acute myeloid leukemia derived from myelodysplastic syndrome (MDS/AML), and acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LBL). The names of the study drugs involved in this study are below. Please note this is a list for the study as a whole, participants will receive drugs according to disease cohort. * Venetoclax * Azacitidine * Cytarabine * Methotrexate * Hydrocortisone * Leucovorin * Dexamethasone * Vincristine * Doxorubicin * Dexrazoxane * Calaspargase pegol * Hydrocortisone
This is a single arm, open-label, multi-center, phase II study to determine the efficacy and safety of CTL019 in pediatric patients with r/r B-cell ALL.
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
RATIONALE: Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage cancer cells. Giving combination chemotherapy together with radiation therapy may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving chemotherapy together with radiation therapy works in treating patients with acute lymphoblastic leukemia that has relapsed in the CNS and/or testes.
Allogeneic stem cell transplantation may provide long-term remissions for some patients with hematological malignancies. However, allogeneic transplantation is associated with a significant risk of potentially life threatening complications due to the effects of chemotherapy and radiation on the body and the risks of serious infection. In addition, patients may develop a condition called Graft versus host disease that arises from an inflammatory reaction of the donor cells against the recipient's normal tissues. The risk of graft versus host disease is somewhat increased in patients who are receiving a transplant from an unrelated donor. One approach to reduce the toxicity of allogeneic transplantation is a strategy call nonmyeloablative or "mini" transplants. In this approach, patients receive a lower dose of chemotherapy in an effort to limit treatment related side effects. Patients undergoing this kind of transplant remain at risk for graft versus host disease particularly if they receive a transplant from an unrelated donor. The purpose of this research study is to examine the ability of a drug called CAMPATH-1H to reduce the risk of graft versus host disease and make transplantation safer. CAMPATH-1H binds to and eliminates cells in the system such as T cells that can cause graft versus host disease (GvHD). As a result, earlier studies have shown that patients who receive CAMPATH-1H with an allogeneic transplant have a lower risk of GvHD. In the present study, we will examine the impact of treatment with CAMPATH-1H as part of an allogeneic transplant on the development of GvHD and infection. In addition, we will study the effects of CAMPATH-1H on the immune system by testing blood samples in the laboratory.
AINV18P1 is a Phase 1 study where palbociclib will be administrated in combination with a standard re-induction platform in pediatric relapsed Acute Lymphoblastic Leukemia (ALL) and lymphoblastic lymphoma (LL). LL patients are included because the patient population is rare and these patients are most commonly treated with ALL regimens. The proposed palbociclib starting dose for this study will be 50 mg/m\^2/day for 21 days.
This is a phase I study of temsirolimus (Torisel) combined with dexamethasone, cyclophosphamide and etoposide in patients with relapsed acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL) or peripheral T-cell lymphoma (PTL).
This is a pilot study using decitabine and vorinostat before and during chemotherapy with vincristine, dexamethasone, mitoxantrone, and peg-asparaginase in pediatric patients with acute lymphoblastic leukemia (ALL).
An experimental drug called EZN-3042 targets survivin, a protein expressed in leukemia cells at relapse that promotes the leukemia cells to grow. The main goal of this phase I study is to find out the dose of EZN-3042 that can be safely given without serious side effects both alone and in combination with standard chemotherapy drugs during re-induction.
This was a Phase 2, international, multicenter, open-label, single-arm trial evaluating Marqibo (VSLI) in adult subjects with: 1) Ph- ALL or lymphoblastic lymphoma in second or greater relapse; or 2) Ph- ALL or lymphoblastic lymphoma who failed 2 or greater treatment lines of anti-leukemia chemotherapy. The original enrollment target for this study was approximately 56 subjects. Per a protocol amendment, enrollment was increased from 56 to 65. The primary objective of this study was to evaluate: - The efficacy of the study treatment as determined by the rate of CR plus CR with incomplete blood count recovery (CRi) in adult subjects with Philadelphia chromosome-negative (Ph-) ALL in second relapse or adult subjects with (Ph-) ALL who failed 2 treatment lines of anti-leukemia chemotherapy. Subjects must have achieved a CR to at least 1 prior anti-leukemia therapy as defined by a leukemia-free interval of ≥ 90 days.
This is a Phase I, multi-center, open-label, dose escalation, MTD study of liposomal annamycin in children and young adults with refractory or relapsed ALL or AML. Enrollment will occur in cohorts of approximately 3 subjects with 10 additional subjects enrolled at the MTD. The liposomal annamycin doses will be escalated in sequential cohorts. Six dose levels of liposomal annamycin are planned: 130, 160, 190, 230, 280, and 310 mg/m2/day.The primary objectives of this study are 1) to evaluate the safety and identify the maximum tolerated dose (MTD) of liposomal annamycin when given in 3 consecutive daily doses, starting at 130 mg/m2/day and ranging to as high as 310 mg/m2/day, or the MTD, whichever is lower, in children and young adults with refractory or relapsed acute lymphocytic leukemia (ALL) or acute myelogenous leukemia (AML), and 2) to evaluate the antileukemic activity of liposomal annamycin in children and young adults with refractory or relapsed ALL or AML. The secondary objective is to measure the pharmacokinetics of annamycin and its metabolite, annamycinol.
This is a Phase I/II multi-center, open label, dose escalation study to identify the maximum tolerated dose (MTD) of liposomal annamycin and to evaluate the safety of liposomal annamycin in patients with refractory or relapsed acute lymphocytic leukemia.
RATIONALE: Diagnostic procedures, such as genetic testing, may improve the ability to detect acute lymphocytic leukemia and determine the extent of disease. PURPOSE: Diagnostic study to try to detect changes in the genes of children who have been treated for relapsed acute lymphocytic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy followed by peripheral stem cell transplantation in treating children who have relapsed acute lymphocytic leukemia.
This is a phase I/II clinical trial evaluating the activity of combination chemotherapy with venetoclax and navitoclax in children with relapsed or refractory acute lymphoblastic leukemia or lymphoma (rALL) and assessing the combination dose of venetoclax combinations with either blinatumomab for CD19-postive patients or navitoclax and high-dose cytarabine for CD19-negative patients. Primary Objectives * To compare Minimal Residual Disease (MRD)-negative CR/CRi rate in children with relapsed or refractory acute lymphoblastic leukemia or lymphoma (rALL) following Block 1 therapy with venetoclax and navitoclax based reinduction to historical controls. * To identify the recommended phase 2 combination dose (RP2D) of venetoclax based consolidation in novel combinations with a) high-dose cytarabine and navitoclax or b) blinatumomab. Secondary Objectives * To estimate the tolerability and activity of venetoclax based consolidation in novel combinations with a) high-dose cytarabine and navitoclax or b) blinatumomab. * To describe event-free and overall survival in patients treated with this regimen. Exploratory Objectives * To evaluate MRD-negative CR/CRi rates in each prespecified groups: late first relapse B-ALL; early first relapse and second or greater relapse B-ALL; and relapsed T-ALL. * To identify drug sensitivity patterns in patient samples prior to and after receiving combination therapy and evaluate mechanisms of disease resistance/ escape. * To explore immune subsets during and after this regimen. * Evaluate response to therapy in rare relapse patient subsets. * Explore breakthrough infections in children and young adults with relapsed or refractory ALL
This research study is evaluating a drug called ribociclib (LEE011) given in combination with everolimus and other standard of care chemotherapy drugs as a possible treatment for relapsed or refractory ALL. The names of the drugs involved in this study are: * ribociclib * everolimus * dexamethasone
This is a pilot study utilizing Marqibo® (vincristine sulfate liposome injection) combined with dexamethasone, mitoxantrone and asparaginase (UK ALL R3) for relapsed acute lymphoblastic leukemia (ALL).
RATIONALE: Drugs used in chemotherapy, such as cytarabine and clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase II trial is studying clofarabine when given together with cytarabine to see how well they work in treating patients with refractory or relapsed acute myeloid leukemia or acute lymphoblastic leukemia.
This laboratory study is looking into genes in samples from younger patients with relapsed acute lymphoblastic leukemia. Studying samples of tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors find better ways to treat cancer.
CLAG-M is an active, well tolerated regimen in acute myelogenous leukemia. Each of the agents is active in Acute Lymphoblastic Leukemia (ALL) as well. The current trial will determine the efficacy of the regimen in patients with relapsed ALL.
This phase I trial studies the side effects and the best dose of temsirolimus when given together with dexamethasone, mitoxantrone hydrochloride, vincristine sulfate, and pegaspargase in treating young patients with relapsed acute lymphoblastic leukemia or non-Hodgkin lymphoma. Temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as dexamethasone, mitoxantrone hydrochloride, vincristine sulfate, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus with combination chemotherapy may be and effective treatment for acute lymphoblastic leukemia or non-Hodgkin lymphoma.
This is a pilot study of a drug called rituximab used together with other drugs-prednisone, etoposide, and ifosfamide. Prednisone, etoposide, and ifosfamide have been used as part of standard chemotherapy for relapsed Acute Lymphoblastic Leukemia (ALL). Rituximab was approved by the Food and Drug Administration in 1997. However, the use of rituximab with prednisone, etoposide, and ifosfamide in pediatric patients with relapsed or refractory ALL is considered experimental. This study is for patients who have ALL in second or greater relapse, or in first relapse and not responding to treatment. The goals of this study are: * To see if using rituximab with prednisone, etoposide, and ifosfamide is beneficial to leukemia treatment * To find out what side effects this combination of drugs can cause A total of 15 participants (30 years old or younger) will be enrolled, over a period of 2 years.