937 Clinical Trials for Various Conditions
This study is an open-label, single arm phase II study which will examine the efficacy and toxicity of the combination therapy of GO, mitoxantrone and etoposide in patients who did not respond to first line induction therapy.
The primary objective is to define the safety and tolerability of AB8939 in patients with AML by determining the dose-limiting toxicities, the maximum tolerated dose, and the recommended dose for dose expansion study.
The study is a Phase II clinical trial. Patients will receive intensity-modulated total marrow irradiation (TMI) at a dose of 9 Gray (Gy) with standard myeloablative fludarabine intravenous (IV) and targeted busulfan (FluBu4) conditioning prior to allogeneic hematopoietic stem cell transplant (HSCT). Graft-versus-host disease (GVHD) prophylaxis will include Cyclophosphamide on Day +3 and +4, tacrolimus, and mycophenolate mofetil.
This is a phase I/2, interventional, open-label, multicenter study to assess the safety and efficacy of ARD103 in patients with relapsed or refractory acute myeloid leukemia or myelodysplastic syndrome.
The goal of this study is to determine the safety and antitumor effects of REM-422, a MYB mRNA degrader, in people with Higher Risk MDS and relapsed/refractory AML
CB-012 is an allogeneic chimeric antigen receptor (CAR-T) cell therapy that targets C-type lectin-like molecule-1 (CLL-1). This is a Phase 1 study to evaluate the safety, preliminary efficacy, and pharmacokinetics, of CB-012 (the study treatment) in adults with acute myeloid leukemia (AML) that has come back after prior treatment (relapsed) or did not respond or is no longer responding to other treatment (refractory). Participants must have received at least 1 but not more than 3 prior lines of treatment for AML .
The purpose of this study is to find out whether CD371-YSNVZ-IL18 CAR T cells are safe, and to look for the highest dose of CD371-YSNVZ-IL18 CAR T cells that cause few or mild side effects in participants.
Iadademstat is being studied as a treatment for subjects with Relapsed or Refractory Acute Myeloid Leukemia (R/R AML) with FMS-like tyrosine kinase mutation (FLT3 mut+). During the trial, iadademstat will be given in combination with gilteritinib, a drug that is already approved to treat patients with FLT3-mutated R/R AML.
The investigator is testing the addition of venetoclax to 5-azacitidine and vorinostat followed by standard chemotherapy to enhance treatment response in AML patients.
This study evaluates the safety and tolerability of escalating doses of BP1002 (Liposomal Bcl-2 Antisense Oligodeoxynucleotide) in patients with refractory/relapsed AML. The study is designed to assess the safety profile, identify DLTs, biologically effective doses, PK, PD and potential anti-leukemic effects of BP1002 as single agent (dose escalation phase) followed by assessing BP1002 in combination with decitabine (dose expansion phase).
A phase 1, open-label, non-randomized study enrolling pediatric and young adult patients with relapsed or refractory CD33+ leukemia with and without prior history of allogeneic hematopoietic cell transplantation, to examine the safety and feasibility of administering an autologous T cell product that has been genetically modified to express a Dimerizing Agent Regulated Immunoreceptor Complex (DARIC).
This is an open-label, multicenter, Phase 1/Phase 2, dose escalation and dose expansion study to evaluate the safety, pharmacokinetics, pharmacodynamics and anti-leukemic activity of SAR443579 in various hematological malignancies.
This study will evaluate the safety and tolerability of oral KPT-9274 for the treatment of patients with relapsed or refractory acute myeloid leukemia.
The study explores whether Ceramide NanoLiposome (CNL) combined with other conventional cancer-fighting drugs makes them work better.
Phase 1 open-label study to evaluate the safety of intravenously administered, lentivirally transduced T cells expressing anti-CD123 chimeric antigen receptors expressing tandem TCRζ and 4-1BB (TCRζ /4-1BB) costimulatory domains in pediatric subjects with relapsed/refractory Acute Myeloid Leukemia (AML).
Phase 1 open-label study to estimate the safety, manufacturing feasibility, and efficacy of intravenously administered, lentivirally transduced T cells expressing anti-CD123 chimeric antigen receptors expressing tandem TCRζ and 4-1BB (TCRζ /4-1BB) costimulatory domains in Acute Myeloid Leukemia (AML) subjects.
This research study is being done in people with advanced-stage solid tumor cancer. Advanced stage solid tumor cancer is a cancer that forms an abnormal mass of tissue that usually does not contain cysts or liquid areas. Different types of solid tumors are named for the type of cells that form them. Examples of solid tumors include lung cancer, breast cancer, prostate cancer, kidney cancer, colorectal cancer, melanoma and sarcoma. The purpose of this research study is to evaluate the safety of the investigational study drug, FN-1501, at different dose levels. FN-1501 has not previously been given to human subjects. It is intended for the treatment in this study of patients with advanced solid tumor cancers. This study will determine the effects, good and/or bad, on patients' cancer. The main objective of this study is to define the recommended phase 2 dose (RP2D) and maximum tolerated dose (MTD) of FN-1501. The MTD is the highest dose a person can take without having bad side effects, and the RP2D will be the dose of FN-1501 used in future studies.
RATIONALE: Drugs used in chemotherapy, such as cytarabine and clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase II trial is studying clofarabine when given together with cytarabine to see how well they work in treating patients with refractory or relapsed acute myeloid leukemia or acute lymphoblastic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Zosuquidar trihydrochloride, a modulator of multidrug resistance (MDR), may help daunorubicin and cytarabine kill more cancer cells by making cancer cells more sensitive to the drugs. It is not yet known whether daunorubicin and cytarabine are more effective with or without zosuquidar trihydrochloride in treating acute myeloid leukemia or anemia. PURPOSE: This randomized phase III trial is studying how well giving zosuquidar trihydrochloride together with daunorubicin and cytarabine works compared to daunorubicin and cytarabine alone in treating older patients with newly diagnosed acute myeloid leukemia or anemia that has not responded to previous treatment.
This study will evaluate the safety and efficacy of alvocidib in patients with AML who have either relapsed from or are refractory to venetoclax in combination with azacytidine or decitabine.
The purpose of the study was to identify doses and schedules of VOB560 and MIK665 that can be safely given and to learn if the combination can have possible benefits for patients with Non-Hodgkin lymphoma (NHL), Multiple Myeloma (MM) or Acute Myeloid Leukemia (AML). VOB560 and MIK665 are selective and potent blockers respectively of the B-cell lymphoma 2 (BCL2) protein and of the myeloid cell leukaemia 1 (MCL1) protein, proteins that may protect tumor cells from undergoing cell death. VOB560 and MIK665 are designed to block the functions of the BCL2 and MCL1 proteins, so that the tumor cells that rely on these proteins undergo cell death. Preclinical data suggest that concomitant treatment with VOB560 in combination with MIK665 induces robust anti-tumor activity.
This phase I trial studies the side effects and best dose of STAT inhibitor OPB-111077 when given together with decitabine and venetoclax in treating patients with acute myeloid leukemia that does not respond to treatment (refractory), has come back (relapsed), or is newly diagnosed and ineligible for intensive chemotherapy. STAT inhibitor OPB-111077 and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving STAT inhibitor OPB-111077, decitabine, and venetoclax may work better in treating patients with acute myeloid leukemia compared to decitabine alone.
This study will assess the safety and efficacy of vismodegib in patients with relapsed/refractory acute myelogenous leukemia (AML) and relapsed/refractory high-risk myelodysplastic syndrome (MDS). Patients in Cohort 1 will receive single-agent vismodegib 150 mg orally daily. In Cohort 2, patients will receive vismodegib 150 mg orally daily in combination with cytarabine 20 mg subcutaneously for 10 days. Anticipated time on study treatment is until disease progression, intolerable toxicity, or patient withdrawal of consent.
This phase I trial tests the safety, side effects, and best dose of genetically engineered cells (CD83 chimeric antigen receptor \[CAR\] T cells) in treating patients with acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or has not responded to previous treatment (refractory). CD83 is a protein that is found on AML blasts. Blasts are abnormal immature white blood cells that can multiply uncontrollably: filling up the bone marrow and preventing the production of other cells important for survival. CD83 CAR T cells represent a new cell therapy to eliminate AML blasts, while avoiding the risk for graft versus host disease (GVHD) after stem cell transplant to replace bone marrow or, tumor toxicity like myeloid aplasia where the body's own immune system causes damage to the bone marrow stem cells. Therefore, human CD83 CAR T cells are a promising cell-based approach to preventing two critical complications of stem-cell transplant - GVHD and relapse. Giving CD83 CAR T cells may be safe, tolerable, and/or effective in treating patients with relapsed or refractory AML.
This Phase 1, multicenter, open-label, dose escalation and dose optimization study is designed to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of AUTX-703 administered orally in subjects with advanced hematologic malignancies.
This is a phase 1 dose escalation study to determine the safety of anti-FLT3 CAR-T in subjects with R/R AML. The primary objective is to assess safety. Up to 18 evaluable subjects will be enrolled. Evaluable subjects are defined as those who have received an infusion of HG-CT-1. Primary clinical objectives: i. Determine the safety of HG-CT-1 based on the proportion of subjects infused with HG-CT-1 who experience a dose limiting toxicity (DLT). Secondary clinical objectives: i. Estimate the efficacy of HG-CT-1 according to standard clinical response criteria for AML. ii. Estimate overall survival of evaluable subjects. iii. Estimate progression-free survival of evaluable subjects. iv. Estimate duration of response in evaluable subjects who achieve a response. Secondary scientific objectives: i. Describe the persistence and trafficking of HG-CT-1. ii. Describe HG-CT-1 bioactivity and its predictors.
Phase I, open-label study to assess the safety, feasibility, pharmacokinetics, and preliminary efficacy of CART123 cells given in combination with ruxolitinib in patients with relapsed or refractory acute myeloid leukemia (AML). All subjects will receive a single infusion of CART123 cells following ruxolitinib administration and lymphodepletion. Ruxolitinib dosing will begin at initiation of lymphodepleting chemotherapy (Day -6 ±1d) and continue for up to 14 days post CART123 administration.
This phase 1 trial tests safety, side effects, and best dose of AOH1996 for the treatment of patients with acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or AML that has not responded to previous treatment (refractory). AOH1996 is in a class of medications called PCNA inhibitors. It inhibits cancer growth and induces deoxyribonucleic acid (DNA) damage. This may help keep cancer cells from growing and damage cancer cell DNA. Giving AOH1996 may be safe, tolerable and/or effective in treating patients with AML.
The objective of this study to evaluate the safety, tolerability, pharmacokinetic profile, and preliminary efficacy of BL-M11D1 in patients with relapsed/refractory acute myeloid leukemia.
This clinical research study is being done to answer questions about how to treat cancer. To clear cancer cells from the body, the immune system needs the action of proteins called Type 1 interferons. The protein STING (for STimulator of INterferon Genes) stimulates the body to make Type 1 interferons. Type 1 interferons activate key molecules in cancer immunity to kill cancer cells. CRD3874 is a synthetic drug that activates STING, and STING stimulates the immune system to kill cancer cells. In experiments on blood from humans, CRD3874 makes blood cells produce molecules responsible for anti-cancer activity. CRD3874 was tested in mice with cancers including leukemia, head and neck cancer, lung cancer, pancreatic cancer and sarcoma. In these mice, CRD3874 made tumors shrink or disappear, and some mice developed long-lasting immunity against cancer. Also, when CRD3874 was given with other anti-cancer treatments, it increased their anti-cancer effects.