16 Clinical Trials for Various Conditions
This clinical trial studies how well simplified patient care strategy works in decreasing early death in patients with acute promyelocytic leukemia. Implementing simplified acute promyelocytic leukemia guidelines along with support from acute promyelocytic leukemia experts may decrease deaths and improve survival.
This phase II trial studies how well tretinoin and arsenic trioxide with or without gemtuzumab ozogamicin works in treating patients with previously untreated acute promyelocytic leukemia. Drugs used in chemotherapy, such as tretinoin and arsenic trioxide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotoxins, such as gemtuzumab ozogamicin, may find certain cancer cells and kill them without harming normal cells. Giving tretinoin and arsenic trioxide together with gemtuzumab ozogamicin may kill more cancer cells.
This phase III trial is studying combination chemotherapy to see how well it works in treating young patients with newly diagnosed acute promyelocytic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells.
This pilot phase I trial studies how well positron emission tomography (PET)/magnetic resonance imaging (MRI), fludeoxyglucose F-18 (18F-FDG) PET/computed tomography (CT), and whole body MRI work in finding extramedullary myeloid leukemia in patients with newly diagnosed acute myeloid leukemia. Extramedullary myeloid leukemia is a type of cancer found outside of the bone marrow and can be hard to detect with routine bone marrow monitoring, such as bone marrow aspirations. Diagnostic procedures, such as PET/MRI, 18F-FDG PET/CT and whole body MRI, may help find and diagnose extramedullary myeloid leukemia in patients with newly diagnosed acute myeloid leukemia.
This pilot phase II trial studies how well erlotinib hydrochloride works in treating patients with relapsed or refractory acute myeloid leukemia. Erlotinib hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial is studying the side effects and best dose of sorafenib in treating young patients with relapsed or refractory solid tumors or leukemia. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.
This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.
This phase II trial studies how well sorafenib tosylate and chemotherapy work in treating older patients with acute myeloid leukemia (AML). Sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as daunorubicin hydrochloride and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving sorafenib tosylate and combination chemotherapy may be an effective treatment for AML.
This research study is looking at biomarkers in DNA samples from patients with acute lymphoblastic leukemia or acute myeloid leukemia. Studying samples of DNA from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer.
This phase I trial studies the side effects and best dose of lenalidomide when given together with cytarabine and idarubicin in treating patients with acute myeloid leukemia. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as cytarabine and idarubicin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide together with cytarabine and idarubicin may kill more cancer cells.
This phase I trial is studying the side effects and best dose of belinostat when given together with azacitidine in treating patients with advanced hematologic cancers or other diseases. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with azacitidine may kill more cancer cells.
This randomized phase II trial studies azacitidine with or without entinostat to see how well they work compared to azacitidine alone in treating patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, or acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Entinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine together with entinostat may work better in treating patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, or acute myeloid leukemia.
This randomized phase I trial is studying the side effects and best dose of two different schedules of sorafenib in treating patients with refractory or relapsed acute leukemia, myelodysplastic syndromes, or blastic phase chronic myelogenous leukemia. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.
This randomized phase II trial studies how well giving tacrolimus and mycophenolate mofetil (MMF) with or without sirolimus works in preventing acute graft-versus-host disease (GVHD) in patients undergoing donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body-irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving MMF and tacrolimus with or without sirolimus after transplant may stop this from happening.
This phase III trial studies tretinoin and arsenic trioxide in treating patients with newly diagnosed acute promyelocytic leukemia. Standard treatment for acute promyelocytic leukemia involves high doses of a common class of chemotherapy drugs called anthracyclines, which are known to cause long-term side effects, especially to the heart. Tretinoin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Arsenic trioxide may stop the growth of cancer cells by either killing the cells, by stopping them from dividing, or by stopping them from spreading. Completely removing or reducing the amount of anthracycline chemotherapy and giving tretinoin together with arsenic trioxide may be an effective treatment for acute promyelocytic leukemia and may reduce some of the long-term side effects.
This phase I clinical trial is studies the side effects and best dose of giving veliparib together with temozolomide in treating patients with acute leukemia. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with temozolomide may kill more cancer cells.