10 Clinical Trials for Various Conditions
The aim of this study is to assess the safety and efficacy of autologous transplantation of hematopoietic stem cells (CD34+ cells) from mobilized peripheral blood (mPB) of ADA-deficient SCID infants and children following human ADA gene transfer by the EFS-ADA lentiviral vector. The level of gene transfer in blood cells and immune function will be measured as endpoints.
This registry study is being conducted in patients with adenosine deaminase severe combined immune deficiency (ADA-SCID) who require enzyme replacement therapy (ERT) treatment with Revcovi. Data on safety and on measures of efficacy are collected.
This study will evaluate a new method for delivering gene transfer therapy to patients with severe combined immunodeficiency disease (SCID) due to a defective adenosine deaminase (ADA) gene. This gene codes for the adenosine deaminase enzyme, which is essential for the proper growth and function of infection-fighting white blood cells called T and B lymphocytes. Patients who lack this enzyme are vulnerable to frequent and severe infections. Some patients with this disease receive enzyme replacement therapy with weekly injections of the drug PEG-ADA (ADAGEN). This drug may increase the number of immune cells and reduce infections, but it is not a cure. Gene transfer therapy, in which a normal ADA gene is inserted into the patient s cells, attempts to correct the underlying cause of disease. This therapy has been tried in a small number of patients with varying degrees of success. In this study, the gene will be inserted into the patient s stem cells (cells produced by the bone marrow that mature into the different blood components white cells, red cells and platelets). Patients with ADA deficiency and SCID who are taking PEG-ADA and are not candidates for HLA-identical sibling donor bone marrow transplantation may be eligible for this study. Participants will be admitted to the NIH Clinical Center for 2 to 3 days. Stem cells will be collected either from cord blood (in newborn patients) or from the bone marrow. The bone marrow procedure is done under light sedation or general anesthesia. It involves drawing a small amount of marrow through a needle inserted into the hip bone. The stem cells in the marrow will be grown in the laboratory and a normal human ADA gene will be transferred into them through a special type of disabled mouse virus. A few days later, the patient will receive the ADA-corrected cells through an infusion in the vein that will last from 10 minutes to 2 hours. Patients will be evaluated periodically for immune function with blood tests, skin tests, and reactions to tetanus, diphtheria, H. influenza B and S. pneumoniae vaccinations. The survival of ADA-corrected cells will be monitored through blood tests. The number and amount of blood tests will depend on the patient s age, weight and health, but is expected that blood will not be drawn more than twice a month. Patients will also undergo bone marrow biopsy aspirate (as described above) twice a year. Patients will be followed once a year indefinitely to evaluate the long-term effects of therapy.
This pilot clinical trial studies total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients with severe combined immunodeficiency (SCID) undergoing donor bone marrow transplant. Giving total-body irradiation (TBI) before a donor bone marrow transplant using stem cells that closely match the patient's stem cells, helps stop the growth of abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may mix with the patient's immune cells and help destroy any remaining abnormal cells. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
This study will monitor the long-term effects of gene therapy in patients with severe combined immunodeficiency disease (SCID) due to a deficiency in an enzyme called adenosine deaminase (ADA). It will also follow the course of disease in children who are not receiving gene therapy, but may have received enzyme replacement therapy with the drug PEG-ADA. ADA is essential for the growth and proper functioning of infection-fighting white blood cells called T and B lymphocytes. Patients who lack this enzyme are, therefore, immune deficient and vulnerable to frequent infections. Injections of PEG-ADA may increase the number of immune cells and reduce infections, but this enzyme replacement therapy is not a definitive cure. In addition, patients may become resistant or allergic to the drug. Gene therapy, in which a normal ADA gene is inserted into the patient's cells, attempts to correcting the underlying cause of disease. Patients with SCID due to ADA deficiency may be eligible for this study. Patients may or may not have received enzyme replacement therapy or gene transfer therapy, or both. Participants will have follow-up visits at the National Institutes of Health in Bethesda, Maryland, at least once a year for a physical examination, blood tests, and possibly the following additional procedures to evaluate immune function: 1. Bone marrow sampling - A small amount of marrow from the hip bone is drawn (aspirated) through a needle. The procedure can be done under local anesthesia or light sedation. 2. Injection of small amounts of fluids into the arm to study if the patient's lymphocytes respond normally. 3. Administration of vaccination shots. 4. Collection of white blood cells through apheresis - Whole blood is collected through a needle placed in an arm vein. The blood circulates through a machine that separates it into its components. The white cells are then removed, and the red cells, platelets and plasma are returned to the body, either through the same needle used to draw the blood or through a second needle placed in the other arm. 5. Blood drawings to obtain and study the patient's lymphocytes.
Severe combined immune deficiency (SCID) may result from inherited deficiency of the enzyme adenosine deaminase (ADA). Children with ADA-deficient SCID often die from infections in infancy, unless treated with either a bone marrow transplant or with ongoing injections of PEG-ADA (Adagen) enzyme replacement therapy. Successful BMT requires the availability of a matched sibling donor for greatest success, and treatment using bone marrow from a less-well matched donor may have a higher rate of complications. PEG-ADA may restore and sustain immunity for many years, but is very expensive and requires injections 1-2 times per week on an ongoing basis. This clinical trial is evaluating the efficacy and safety of an alternative approach, by adding a normal copy of the human ADA gene into stem cells from the bone marrow of patients with ADA-deficient SCID. Eligible patients with ADA-deficient SCID, lacking a matched sibling donor, will be eligible if they meet entry criteria for adequate organ function and absence of active infections and following the informed consent process. Bone marrow will be collected from the back of the pelvis from the patients and processed in the laboratory to isolate the stem cells and add the human ADA gene using a retroviral vector. The patients will receive a moderate dosage of busulfan, a chemotherapy agent that eliminates some of the bone marrow stem cells in the patient, to "make space" for the gene-corrected stem cells to grow once they are given back by IV. Patients will be followed for two years to assess the potentially beneficial effects of the procedure on the function of their immune system and to assess possible side-effects. This gene transfer approach may provide a better and safer alternative for treatment of patients with ADA-deficient SCID.
This observational long-term follow-up study is designed to collect safety and efficacy data from ADA-SCID patients previously treated with autologous ex vivo gene therapy products based on the EFS-ADA LV encoding for human adenosine deaminase (ADA) gene (EFS-ADA LV), as part of the OTL-101 clinical development program. No investigational medicinal product will be administered to these patients as part of the OTL-101-6 study.
Early Check provides voluntary screening of newborns for a selected panel of conditions. The study has three main objectives: 1) develop and implement an approach to identify affected infants, 2) address the impact on infants and families who screen positive, and 3) evaluate the Early Check program. The Early Check screening will lead to earlier identification of newborns with rare health conditions in addition to providing important data on the implementation of this model program. Early diagnosis may result in health and development benefits for the newborns. Infants who have newborn screening in North Carolina will be eligible to participate, equating to over 120,000 eligible infants a year. Over 95% of participants are expected to screen negative. Newborns who screen positive and their parents are invited to additional research activities and services. Parents can enroll eligible newborns on the Early Check electronic Research Portal. Screening tests are conducted on residual blood from existing newborn screening dried blood spots. Confirmatory testing is provided free-of-charge for infants who screen positive, and carrier testing is provided to mothers of infants with fragile X. Affected newborns have a physical and developmental evaluation. Their parents have genetic counseling and are invited to participate in surveys and interviews. Ongoing evaluation of the program includes additional parent interviews.
The purpose of this study is to evaluate the safety, efficacy, and pharmacokinetics of EZN-2279 in patients with ADA-deficient combined immunodeficiency currently being treated with Adagen.
This study will examine 1) the role of hereditary factors in cystic fibrosis; i.e., the relationship of the disease to specific gene variations, and 2) the role of bacterial products involved in lung infections substances produced by bacteria may worsen the disease. Patients with cystic fibrosis who are being followed by the Medical College of Wisconsin or the University of Wisconsin-Madison are eligible for this study. Participants will have blood tests, pulmonary function tests, a sputum culture, and buccal swabbing (cotton swabbing of the inside of the cheek to collect cells for DNA study). In addition, their medical records will be reviewed for a history of lung infections and the results of various tests, including pulmonary function studies, chest X-rays and bacterial cultures. Blood samples collected previously at the Medical College of Wisconsin or the University of Wisconsin-Madison will also be analyzed for antibodies to bacteria. Although this is a one-time study, participants may be asked to return for repeated tests. ...