120 Clinical Trials for Various Conditions
This randomized phase II trial studies how well choline magnesium trisalicylate with idarubicin and cytarabine works in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as choline magnesium trisalicylate, idarubicin, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet know whether choline magnesium trisalicylate and combination chemotherapy is more effective than combination chemotherapy alone in treating patients with acute myeloid leukemia.
This pilot clinical trial studies if cells donated by a close genetic relative can help maintain acute myeloid leukemia (AML) complete remission (CR). Eligible patients will receive a standard induction chemotherapy. If a complete remission results they will receive irradiated allogeneic cells from a HLA haploidentical relative. Only patients who obtain a CR after the standard induction chemotherapy are eligible for the experimental therapy (irradiated haploidentical cells).
This phase 2 trial studies how well ixazomib(MLN9708) works in treating study participants with relapsed or refractory acute myeloid leukemia. Ixazomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with combination chemotherapy in treating patients with relapsed or refractory acute myeloid leukemia. Lenalidomide may stop the growth of acute myeloid leukemia by blocking blood flow to the cancer. Drugs used in chemotherapy, such as mitoxantrone hydrochloride, etoposide, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide and combination chemotherapy may be an effective treatment for acute myeloid leukemia.
This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.
The purpose of the study is to determine if metformin in combination with cytarabine is safe and effective. Participants in this research study have acute myeloid leukemia (AML) that has come back after initial treatment or has not gone away with initial therapy.There is evidence that metformin directly kills leukemia cells. Laboratory data have also shown that combinations of metformin with cytarabine are more efficient than each agent alone in killing leukemia cells in the laboratory.
This phase I trial studies the side effects and best dose of azacitidine when given together with cytarabine and mitoxantrone hydrochloride in treating patients with high-risk acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also help cytarabine and mitoxantrone hydrochloride work better by making the cancer cells more sensitive to the drugs
This clinical trial studies idarubicin, cytarabine, and pravastatin sodium in treating patients with newly diagnosed acute myeloid leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pravastatin sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving idarubicin and cytarabine together with pravastatin sodium may kill more cancer cells.
This pilot clinical trial studies sirolimus, idarubicin, and cytarabine in treating patients with newly diagnosed acute myeloid leukemia. Sirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving sirolimus together with idarubicin and cytarabine may kill more cancer cells.
This phase I trial studies the side effects and best dose of tretinoin when given together with lithium carbonate in treating patients with relapsed or refractory acute myeloid leukemia. Lithium carbonate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tretinoin may help \[type of cancer\] cells become more like normal cells, and to grow and spread more slowly. Giving lithium carbonate together with tretinoin may kill more cancer cells
This phase I trial studies the side effects of donor stem cell transplant in treating patients with high risk acute myeloid leukemia. Giving low doses of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect)
The goals of this study are to learn about the effectiveness, the side-effects, if waiting to give the idarubicin and cytarabine may change the side effects or effectiveness, and to identify factors to predict for responses to this therapy. The trial will examine combination of three chemotherapy drugs. These drugs are decitabine, idarubicin, and cytarabine.
This phase I trial studies the side effects and the best dose of trebananib when given together with or without low-dose cytarabine in treating patients with acute myeloid leukemia (AML). Trebananib may stop the growth of AML by blocking blood flow to the cancer. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving trebananib together with cytarabine may be an effective treatment for patients with AML.
This partially randomized phase II trial studies the side effects and best way to give and best dose of cholecalciferol in treating patients with acute myeloid leukemia (AML) undergoing intensive induction chemotherapy. Cholecalciferol may help improve the outcome of patients with AML undergoing intensive chemotherapy
This phase I/II trial studies the side effects and best dose of etoposide and mitoxantrone hydrochloride when given together with cyclosporine and pravastatin sodium and to see how well they work in treating patients with relapsed or refractory acute myeloid leukemia (AML). Cyclosporine may inhibit efflux of cancer drugs out of cancer cells and may thereby improve chemotherapy treatment for AML. Pravastatin sodium may stop the growth of cancer cells by blocking some of the nutrients needed for cell growth. Drugs used in chemotherapy, such as etoposide and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving cyclosporine together with pravastatin sodium, etoposide, and mitoxantrone hydrochloride may kill more cancer cells
This phase II trial is studying how well AKT inhibitor MK-2206 works in treating patients with relapsed or refractory acute myeloid leukemia (AML). AKT inhibitor MK-2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well early discharge and outpatient care works in patients with myelodysplastic syndrome or acute myeloid leukemia previously treated with intensive chemotherapy. Gathering information about patients with myelodysplastic syndrome or acute myeloid leukemia who are discharged after finishing chemotherapy, or who stay in the hospital until blood counts return to normal, may help doctors learn more about the safety of allowing patients to leave the hospital early, the patient's quality of life, use of medical services, and the cost of these services associated with such a policy.
RATIONALE: Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as mitoxantrone, etoposide, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with combination chemotherapy may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of bortezomib when given together with mitoxantrone, etoposide, and cytarabine in treating patients with relapsed or refractory acute myeloid leukemia.
This phase I trial is studying the safety and potential efficacy of infusing non-human leukocyte antigen (HLA) matched ex vivo expanded cord blood progenitors following treatment with clofarabine and cytarabine for patients with acute myeloid leukemia (AML). The combination of clofarabine, cytarabine (Ara-C) and granulocyte colony-stimulating factor (G-CSF) has been tested in earlier studies for the treatment of acute myeloid leukemia. In these previous clinical trials, this combination of drugs has been shown to have an anti-leukemia effect. However, the combination of clofarabine and Ara-C is profoundly myelosuppressive and immunosuppressive causing periods of neutropenia potentially lasting more than three weeks. During this period, patients are at increased risk of infections that can result in an increased risk of death. G-CSF is a growth factor that is used to help the white blood cells recover more quickly, but even with G-CSF, the use of clofarabine and Ara-C is often limited by the need to take long breaks between treatments to allow blood counts to recover. In our lab we have developed a method of growing or "expanding" blood stem cells (cells that give rise to the blood system) from umbilical cord blood. We are doing this study to find out if giving these expanded cells after chemotherapy is safe, helps the blood system recover more quickly from chemotherapy to allow shorter breaks between treatments, and decreases the risk of infection
The purpose of this study is to test the safety of vorinostat (Zolinza) and azacitidine (Vidaza) when combined with gemtuzumab ozogamicin (GO) at different dose levels. These drugs increase the effect of GO against leukemia cells in the test tube, but we don't know yet whether they also increase the anti-leukemia effect of GO in people.
RATIONALE: Vorinostat may stop the growth of cancer cells by interfering with various proteins needed for cell growth. Monoclonal antibodies, such as gemtuzumab ozogamicin (GO), can block cancer growth in different ways. GO finds cancer cells and helps kill them by carrying a cancer-killing substance to them. Giving vorinostat together with gemtuzumab ozogamicin may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving vorinostat together with gemtuzumab ozogamicin works in treating older patients with previously untreated acute myeloid leukemia.
This randomized phase II trial is comparing three different combination chemotherapy regimens to see how well they work in treating patients with relapsed or refractory acute myeloid leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating patients with relapsed or refractory acute myeloid leukemia.
Drugs used in chemotherapy, such as flavopiridol, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving a new schedule of more than one drug (combination chemotherapy) may kill more cancer cells. This phase I trial is studying the side effects, best dose, and best schedule for flavopiridol when given together with cytarabine and mitoxantrone in treating patients with relapsed or refractory acute leukemia.
This phase I trial is studying the side effects and best dose of tipifarnib and etoposide in treating older patients with newly diagnosed acute myeloid leukemia. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving tipifarnib together with etoposide may kill more cancer cells
This randomized phase II trial is studying 4 different tipifarnib regimens to compare how well they work in treating older patients with acute myeloid leukemia. Tipifarnib may stop the growth of cancer cells by blocking the enzymes necessary for their growth
Randomized phase III trial to compare the effectiveness of combination chemotherapy with or without PSC 833 followed by interleukin-2 or no further therapy in treating older patients who have acute myeloid leukemia. Some cancers become resistant to chemotherapy drugs. Combining PSC 833 with more than one chemotherapy drug may reduce resistance to the drugs and allow the cancer cells to be killed. Combining interleukin-2 with combination chemotherapy plus PSC 833 may kill more cancer cells.
This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.
This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.
This phase II trial studies the side effects and how well omacetaxine mepesuccinate, cytarabine, and decitabine work in treating older patients with newly diagnosed acute myeloid leukemia. Omacetaxine mepesuccinate, cytarabine, and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase 2 clinical trial studies how well CPX-351 (liposomal cytarabine-daunorubicin) works in treating patients with relapsed or refractory acute myeloid leukemia or myelodysplastic syndrome. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.