Treatment Trials

109 Clinical Trials for Various Conditions

Focus your search

TERMINATED
MEK Inhibitor MEK162, Idarubicin, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia
Description

This phase I trial studies the MEK inhibitor MEK162 to see if it is safe in patients when combined with idarubicin and cytarabine. MEK inhibitor MEK162 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving MEK inhibitor MEK162, cytarabine, and idarubicin may be an effective treatment for acute myeloid leukemia.

COMPLETED
Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia
Description

This randomized phase II trial studies how well choline magnesium trisalicylate with idarubicin and cytarabine works in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as choline magnesium trisalicylate, idarubicin, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet know whether choline magnesium trisalicylate and combination chemotherapy is more effective than combination chemotherapy alone in treating patients with acute myeloid leukemia.

TERMINATED
AML Therapy With Irradiated Allogeneic Cells
Description

This pilot clinical trial studies if cells donated by a close genetic relative can help maintain acute myeloid leukemia (AML) complete remission (CR). Eligible patients will receive a standard induction chemotherapy. If a complete remission results they will receive irradiated allogeneic cells from a HLA haploidentical relative. Only patients who obtain a CR after the standard induction chemotherapy are eligible for the experimental therapy (irradiated haploidentical cells).

COMPLETED
Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia
Description

This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.

UNKNOWN
Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy
Description

This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.

COMPLETED
CPX-351 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome
Description

This phase 2 clinical trial studies how well CPX-351 (liposomal cytarabine-daunorubicin) works in treating patients with relapsed or refractory acute myeloid leukemia or myelodysplastic syndrome. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.

TERMINATED
Lenalidomide and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia
Description

This phase I trial studies the side effects and the best dose of lenalidomide when given together with combination chemotherapy in treating patients with relapsed or refractory acute myeloid leukemia. Lenalidomide may stop the growth of acute myeloid leukemia by blocking blood flow to the cancer. Drugs used in chemotherapy, such as mitoxantrone hydrochloride, etoposide, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide and combination chemotherapy may be an effective treatment for acute myeloid leukemia.

COMPLETED
Treatment for Relapsed/Refractory AML Based on a High Throughput Drug Sensitivity Assay
Description

This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.

TERMINATED
Metformin+Cytarabine for the Treatment of Relapsed/Refractory AML
Description

The purpose of the study is to determine if metformin in combination with cytarabine is safe and effective. Participants in this research study have acute myeloid leukemia (AML) that has come back after initial treatment or has not gone away with initial therapy.There is evidence that metformin directly kills leukemia cells. Laboratory data have also shown that combinations of metformin with cytarabine are more efficient than each agent alone in killing leukemia cells in the laboratory.

COMPLETED
Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes
Description

This clinical trial studies idarubicin, cytarabine, and pravastatin sodium in treating patients with newly diagnosed acute myeloid leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pravastatin sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving idarubicin and cytarabine together with pravastatin sodium may kill more cancer cells.

COMPLETED
Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia
Description

This phase I trial studies the side effects and the best dose of trebananib when given together with or without low-dose cytarabine in treating patients with acute myeloid leukemia (AML). Trebananib may stop the growth of AML by blocking blood flow to the cancer. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving trebananib together with cytarabine may be an effective treatment for patients with AML.

COMPLETED
Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia
Description

This randomized phase II trial is studying how alvocidib, cytarabine, and mitoxantrone hydrochloride work compared to cytarabine and daunorubicin hydrochloride in treating patients with newly diagnosed acute myeloid leukemia. Alvocidib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine, mitoxantrone hydrochloride, and daunorubicin hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving alvocidib, cytarabine, and mitoxantrone hydrochloride is more effective than giving cytarabine and daunorubicin hydrochloride in treating patients with acute myeloid leukemia.

TERMINATED
Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia
Description

This phase I/II trial studies the side effects and best dose of etoposide and mitoxantrone hydrochloride when given together with cyclosporine and pravastatin sodium and to see how well they work in treating patients with relapsed or refractory acute myeloid leukemia (AML). Cyclosporine may inhibit efflux of cancer drugs out of cancer cells and may thereby improve chemotherapy treatment for AML. Pravastatin sodium may stop the growth of cancer cells by blocking some of the nutrients needed for cell growth. Drugs used in chemotherapy, such as etoposide and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving cyclosporine together with pravastatin sodium, etoposide, and mitoxantrone hydrochloride may kill more cancer cells

COMPLETED
Early Discharge and Outpatients Care in Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia Previously Treated With Intensive Chemotherapy
Description

This phase II trial studies how well early discharge and outpatient care works in patients with myelodysplastic syndrome or acute myeloid leukemia previously treated with intensive chemotherapy. Gathering information about patients with myelodysplastic syndrome or acute myeloid leukemia who are discharged after finishing chemotherapy, or who stay in the hospital until blood counts return to normal, may help doctors learn more about the safety of allowing patients to leave the hospital early, the patient's quality of life, use of medical services, and the cost of these services associated with such a policy.

COMPLETED
Bortezomib, Mitoxantrone, Etoposide, and Cytarabine in Relapsed or Refractory Acute Myeloid Leukemia
Description

RATIONALE: Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as mitoxantrone, etoposide, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with combination chemotherapy may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of bortezomib when given together with mitoxantrone, etoposide, and cytarabine in treating patients with relapsed or refractory acute myeloid leukemia.

COMPLETED
Donor Umbilical Cord Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.

Conditions
Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic SyndromeAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Minimally Differentiated Myeloid Leukemia (M0)Adult Acute Monoblastic Leukemia (M5a)Adult Acute Monocytic Leukemia (M5b)Adult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)B-cell Adult Acute Lymphoblastic LeukemiaB-cell Childhood Acute Lymphoblastic LeukemiaBlastic Phase Chronic Myelogenous LeukemiaBurkitt LymphomaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Minimally Differentiated Myeloid Leukemia (M0)Childhood Acute Monoblastic Leukemia (M5a)Childhood Acute Monocytic Leukemia (M5b)Childhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueJuvenile Myelomonocytic LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaPreviously Treated Myelodysplastic SyndromesProlymphocytic LeukemiaRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSecondary MyelofibrosisSplenic Marginal Zone LymphomaStage I Chronic Lymphocytic LeukemiaStage II Chronic Lymphocytic LeukemiaStage III Chronic Lymphocytic LeukemiaStage IV Chronic Lymphocytic LeukemiaT-cell Adult Acute Lymphoblastic LeukemiaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaWaldenstrom Macroglobulinemia
COMPLETED
Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia
Description

This phase I trial is studying the safety and potential efficacy of infusing non-human leukocyte antigen (HLA) matched ex vivo expanded cord blood progenitors following treatment with clofarabine and cytarabine for patients with acute myeloid leukemia (AML). The combination of clofarabine, cytarabine (Ara-C) and granulocyte colony-stimulating factor (G-CSF) has been tested in earlier studies for the treatment of acute myeloid leukemia. In these previous clinical trials, this combination of drugs has been shown to have an anti-leukemia effect. However, the combination of clofarabine and Ara-C is profoundly myelosuppressive and immunosuppressive causing periods of neutropenia potentially lasting more than three weeks. During this period, patients are at increased risk of infections that can result in an increased risk of death. G-CSF is a growth factor that is used to help the white blood cells recover more quickly, but even with G-CSF, the use of clofarabine and Ara-C is often limited by the need to take long breaks between treatments to allow blood counts to recover. In our lab we have developed a method of growing or "expanding" blood stem cells (cells that give rise to the blood system) from umbilical cord blood. We are doing this study to find out if giving these expanded cells after chemotherapy is safe, helps the blood system recover more quickly from chemotherapy to allow shorter breaks between treatments, and decreases the risk of infection

COMPLETED
Vorinostat, Azacitidine, and Gemtuzumab Ozogamicin for Older Patients With Relapsed or Refractory AML
Description

The purpose of this study is to test the safety of vorinostat (Zolinza) and azacitidine (Vidaza) when combined with gemtuzumab ozogamicin (GO) at different dose levels. These drugs increase the effect of GO against leukemia cells in the test tube, but we don't know yet whether they also increase the anti-leukemia effect of GO in people.

COMPLETED
Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia
Description

This randomized phase II trial is studying two different schedules of alvocidib to compare how well they work when given together with cytarabine and mitoxantrone in treating patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as alvocidib, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet known which schedule of alvocidib is more effective when given together with cytarabine and mitoxantrone in treating patients with acute myeloid leukemia.

COMPLETED
Bortezomib, Daunorubicin, and Cytarabine in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia
Description

This phase II trial studies the side effects and best dose of bortezomib when given together with daunorubicin and cytarabine and to see how well it works in treating older patients with previously untreated acute myeloid leukemia. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as daunorubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with combination chemotherapy may kill more cancer cells.

TERMINATED
Vorinostat and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia
Description

RATIONALE: Vorinostat may stop the growth of cancer cells by interfering with various proteins needed for cell growth. Monoclonal antibodies, such as gemtuzumab ozogamicin (GO), can block cancer growth in different ways. GO finds cancer cells and helps kill them by carrying a cancer-killing substance to them. Giving vorinostat together with gemtuzumab ozogamicin may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving vorinostat together with gemtuzumab ozogamicin works in treating older patients with previously untreated acute myeloid leukemia.

COMPLETED
Comparing Three Different Combination Chemotherapy Regimens in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia
Description

This randomized phase II trial is comparing three different combination chemotherapy regimens to see how well they work in treating patients with relapsed or refractory acute myeloid leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating patients with relapsed or refractory acute myeloid leukemia.

COMPLETED
Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed, Previously Untreated Acute Myeloid Leukemia
Description

This randomized phase II trial is studying the side effects and how well giving tipifarnib together with etoposide works in treating older patients with newly diagnosed, previously untreated acute myeloid leukemia. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving tipifarnib together with etoposide may kill more cancer cells.

COMPLETED
Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Relapsed or Refractory Acute Leukemia
Description

Drugs used in chemotherapy, such as flavopiridol, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving a new schedule of more than one drug (combination chemotherapy) may kill more cancer cells. This phase I trial is studying the side effects, best dose, and best schedule for flavopiridol when given together with cytarabine and mitoxantrone in treating patients with relapsed or refractory acute leukemia.