277 Clinical Trials for Various Conditions
Ex vivo expanded human myeloid progenitor cells (hMPCs; CLT-008) have the potential to accelerate neutrophil recovery in patients receiving myeloablative conditioning as part of an umbilical cord blood transplant for hematologic cancer. In this study, the safety and tolerability of CLT-008 administered 24 hours after an umbilical cord blood transplant will be determined by monitoring for adverse reactions, neutrophil and platelet recovery, hematopoietic chimerism, graft-versus-host disease (GVHD), and infections.
This phase II clinical trial is studying how well selumetinib works in treating patients with recurrent or refractory acute myeloid leukemia. Selumetinib may stop the growth of cancer by blocking some of the enzymes needed for cell growth
This randomized phase III trial is studying tretinoin and combination chemotherapy to see how well they work compared to tretinoin, combination chemotherapy, and arsenic trioxide in treating patients with acute promyelocytic leukemia that has not been treated previously. Drugs used in chemotherapy, such as daunorubicin, cytarabine, mercaptopurine, methotrexate, and arsenic trioxide, work in different ways to stop cancer cells from dividing so they stop growing or die. Tretinoin may help leukemia cells develop into normal white blood cells. It is not yet known which regimen is more effective for acute promyelocytic leukemia.
This pilot trial studies decitabine, donor natural killer cells, and aldesleukin in treating patients with acute myeloid leukemia that has come back after previous treatment (relapsed) or has not responded to previous treatment (refractory). Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving donor natural killer cells after decitabine may boost the patient's immune system by helping it see the remaining cancer cells as not belonging in the patient's body and causing it to destroy them (called graft-versus-tumor effect). Aldesleukin may stimulate natural killer cells to kill acute myeloid leukemia cells. Giving decitabine, donor natural killer cells, and aldesleukin may be a better treatment for acute myeloid leukemia.
This phase I trial studies the side effects and best dose of selinexor when given together with etoposide with or without mitoxantrone hydrochloride and cytarabine in treating patients with acute myeloid leukemia that has returned (relapsed) or has not responded to treatment (refractory). Selinexor may help stop the growth of tumor cells by blocking an enzyme needed for cancer cell growth. Drugs used in chemotherapy, such as etoposide, mitoxantrone hydrochloride, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy together with selinexor work better in treating relapsed or refractory acute myeloid leukemia.
This pilot clinical trial aims to assess feasibility and tolerability of using an LINAC based "organ-sparing marrow-targeted irradiation" to condition patients with high-risk hematological malignancies who are otherwise ineligible to undergo myeloablative Total body irradiation (TBI)-based conditioning prior to allogeneic stem cell transplant. The target patient populations are those with ALL, AML, MDS who are either elderly (\>50 years of age) but healthy, or younger patients with worse medical comorbidities (HCT-Specific Comorbidity Index Score (HCT-CI) \> 4). The goal is to have the patients benefit from potentially more efficacious myeloablative radiation based conditioning approach without the side effects associated with TBI.
This phase II trial studies the safety and efficacy of total marrow and lymphoid irradiation (TMLI) in combination with two chemotherapy drugs, etoposide and cyclophosphamide, as a preparative regimen before donor stem cell transplant in treating patients with high-risk acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) who have failed previous therapy. Intensity-modulated radiation therapy (IMRT) uses imaging to provide a three-dimensional view of the area to be irradiated. Doctors can then shape and direct the radiation beams at the area from multiple directions while avoiding, as much as possible, nearby organs. TMLI is a method of using IMRT to direct radiation to the bone marrow. Radiation therapy is given before transplant to suppress the immune system, prevent rejection of the transplanted cells, and wipe out any remaining cancer cells. TMLI may allow a greater radiation dose to be delivered to the bone marrow as a preparative regimen before transplant while causing fewer side effects than standard radiation therapy.
This phase I trial studies the MEK inhibitor MEK162 to see if it is safe in patients when combined with idarubicin and cytarabine. MEK inhibitor MEK162 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving MEK inhibitor MEK162, cytarabine, and idarubicin may be an effective treatment for acute myeloid leukemia.
This phase I/II trial studies the side effects and best dose of dasatinib when given together with cytarabine and idarubicin hydrochloride and to see how well they work in treating patients with acute myeloid leukemia that is likely to come back or spread. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and idarubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with cytarabine and idarubicin hydrochloride may be a better treatment for acute myeloid leukemia.
This clinical trial studies gemtuzumab ozogamicin in treating patients with relapsed or refractory acute myeloid leukemia or acute promyelocytic leukemia. Monoclonal antibodies, such as gemtuzumab ozogamicin, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them.
This clinical trial studies bioelectrical impedance measurement for predicting treatment outcome in patients with newly diagnosed acute leukemia. Diagnostic procedures, such as bioelectrical impedance measurement, may help predict a patient's response to treatment for acute leukemia.
This phase II trial studies how well sirolimus and azacitidine works in treating patients with high-risk myelodysplastic syndrome or recurrent acute myeloid leukemia. Sirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Sirolimus and azacitidine may kill more cancer cells.
This randomized phase I trial studies the side effects and best way to give vaccine therapy together with basiliximab in treating patients with acute myeloid leukemia (AML) in complete remission. Vaccines made from the WT1 peptide may help the body build an effective immune response to kill cancer cells. Montanide ISA 51 VG and poly-ICLC may enhance this response. Monoclonal antibodies, such as basiliximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. It is not yet known whether WT1 126-134 peptide vaccine with Montanide ISA 51 VG is more effective than with poly-ICLC when given together with basiliximab in treating AML
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This phase I trial studies the side effects and best dose of AR-42 when given together with decitabine in treating patients with acute myeloid leukemia. AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving AR-42 together with decitabine may kill more cancer cells.
This pilot phase II trial studies how well giving vorinostat, tacrolimus, and methotrexate works in preventing graft-versus-host disease (GVHD) after stem cell transplant in patients with hematological malignancies. Vorinostat, tacrolimus, and methotrexate may be an effective treatment for GVHD caused by a bone marrow transplant.
This phase I trial studies the side effects and best dose of CPI-613 when given together with cytarabine and mitoxantrone hydrochloride in treating patients with relapsed or refractory acute myeloid leukemia. Drugs used in chemotherapy, such as CPI-613, cytarabine and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. CPI-613 may help cytarabine and mitoxantrone hydrochloride work better by making cancer cells more sensitive to the drugs
This phase II trial studies how well decitabine and total-body irradiation followed by donor bone marrow transplant and cyclophosphamide works in treating patients with relapsed or refractory acute myeloid leukemia. Giving decitabine and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving decitabine and total-body irradiation before the transplant together with high-dose cyclophosphamide, tacrolimus, and mycophenolate mofetil after the transplant may stop this from happening.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This study examines a new oral chemotherapy drug called tosedostat, in combination with cytarabine or decitabine. Tosedostat is thought to work by decreasing the availability of amino acids (building blocks the cell needs to make proteins) in cells. It has been shown in early studies to have activity against a variety of cancers, including leukemias. Patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) with specific genetic mutations have a poorer response to chemotherapy and a higher risk of relapse after treatment. Researchers are looking to see if combinations of chemotherapy drugs may improve outcomes for patients that do not respond as well with the current chemotherapy regimens, without increasing the risks of treatment.
This randomized phase II trial studies how well giving rasburicase together with allopurinol works in treating patients with hematologic malignancies. Rasburicase may reduce the level of uric acid in the blood. Allopurinol may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known which dose of rasburicase is more effective in treating hematologic malignancies when given together with or without allopurinol.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This phase 1 trial studies the side effects and the best dose of donor CD8+ memory T-cells in treating patients with hematolymphoid malignancies. Giving low dose of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-cancer effects). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect
This is a randomized clinical trial that studies symptom-adapted physical activity intervention in minimizing physical function decline in older patients with acute myeloid leukemia (AML) undergoing chemotherapy. Physical activity may help decrease functional impairment and improve the quality of life in patients with AML undergoing chemotherapy.
This phase II trial studies how well bortezomib works in treating patients with high-risk acute myeloid leukemia (AML) in remission. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth
The purpose of this research study is to compare the survival rates of patients with better risk disease undergoing hematopoietic stem cell transplant (HSCT) to the survival rates reported in the medical literature of similar patients undergoing reduced intensity HSCT from matched related donors.
RATIONALE: Deferasirox may remove excess iron from the body caused by blood transfusions. PURPOSE: This clinical trial studies deferasirox in treating iron overload caused by blood transfusions in patients with hematologic malignancies.
This phase I trial is studying the side effects and best dose of lenalidomide when given together with cytarabine in treating patients with relapsed or refractory acute myeloid leukemia (AML). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide together with cytarabine may kill more cancer cells
RATIONALE: Growth factors, such as palifermin, may prevent chronic graft-versus-host disease caused by donor stem cell transplant. PURPOSE: This randomized clinical trial studies palifermin in preventing chronic graft-versus-host disease in patients who have undergone donor stem cell transplant for hematologic cancer