59 Clinical Trials for Various Conditions
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of BMS-214662 in treating patients who have acute leukemia, myelodysplastic syndrome, or chronic myeloid leukemia in blast phase
Phase I trial to study the effectiveness of PS-341 in treating patients who have refractory or relapsed acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia in blast phase, or myelodysplastic syndrome. PS-341 may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth
This clinical trial studies gemtuzumab ozogamicin in treating patients with relapsed or refractory acute myeloid leukemia or acute promyelocytic leukemia. Monoclonal antibodies, such as gemtuzumab ozogamicin, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them.
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This phase II trial studies how well bortezomib works in treating patients with high-risk acute myeloid leukemia (AML) in remission. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth
RATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.
This research study is studying biomarkers in patients with acute promyelocytic leukemia. Studying samples of bone marrow from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and about biomarkers related to cancer.
This phase I trial is studying the safety and potential efficacy of infusing non-human leukocyte antigen (HLA) matched ex vivo expanded cord blood progenitors following treatment with clofarabine and cytarabine for patients with acute myeloid leukemia (AML). The combination of clofarabine, cytarabine (Ara-C) and granulocyte colony-stimulating factor (G-CSF) has been tested in earlier studies for the treatment of acute myeloid leukemia. In these previous clinical trials, this combination of drugs has been shown to have an anti-leukemia effect. However, the combination of clofarabine and Ara-C is profoundly myelosuppressive and immunosuppressive causing periods of neutropenia potentially lasting more than three weeks. During this period, patients are at increased risk of infections that can result in an increased risk of death. G-CSF is a growth factor that is used to help the white blood cells recover more quickly, but even with G-CSF, the use of clofarabine and Ara-C is often limited by the need to take long breaks between treatments to allow blood counts to recover. In our lab we have developed a method of growing or "expanding" blood stem cells (cells that give rise to the blood system) from umbilical cord blood. We are doing this study to find out if giving these expanded cells after chemotherapy is safe, helps the blood system recover more quickly from chemotherapy to allow shorter breaks between treatments, and decreases the risk of infection
RATIONALE: Drugs used in chemotherapy, such as clofarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or stopping them from dividing. Colony stimulating factors, such as G-CSF, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy. PURPOSE: This phase I trial is studying the side effects and best dose of clofarabine to see how well it works when given together with cytarabine and G-CSF in treating patients with relapsed or refractory acute myeloid leukemia
This phase II clinical trial is studying how well selumetinib works in treating patients with recurrent or refractory acute myeloid leukemia. Selumetinib may stop the growth of cancer by blocking some of the enzymes needed for cell growth
This phase I trial is studying the side effects and best dose of vorinostat when given together with cytarabine and etoposide in treating patients with relapsed or refractory acute leukemia or myelodysplastic syndromes or myeloproliferative disorders. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with cytarabine and etoposide may kill more cancer cells.
This randomized phase I trial is studying the side effects and best dose of vorinostat when given together with idarubicin in treating patients with relapsed or refractory leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as vorinostat and idarubicin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving vorinostat together with idarubicin may kill more cancer cells.
Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for their growth. Giving the drug in different ways may kill more cancer cells. This randomized phase II trial is studying two different schedules of vorinostat to see how well they work in treating patients with acute myeloid leukemia.
This phase I trial is studying the side effects and best dose of 7-hydroxystaurosporine when given together with perifosine in treating patients with relapsed or refractory acute leukemia, chronic myelogenous leukemia, or myelodysplastic syndromes. 7-Hydroxystaurosporine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as perifosine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving 7-hydroxystaurosporine together with perifosine may kill more cancer cells.
Phase I trial to study the effectiveness of SB-715992 in treating patients who have acute leukemia, chronic myelogenous leukemia, or advanced myelodysplastic syndromes. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop cancer cells from dividing so they stop growing or die
This phase II trial is studying how well romidepsin works in treating patients with relapsed or refractory acute myeloid leukemia. Drugs used in chemotherapy, such as romidepsin, work in different ways to stop tumor cells from dividing so they stop growing or die.
This randomized phase III trial is studying tretinoin and combination chemotherapy to see how well they work compared to tretinoin, combination chemotherapy, and arsenic trioxide in treating patients with acute promyelocytic leukemia that has not been treated previously. Drugs used in chemotherapy, such as daunorubicin, cytarabine, mercaptopurine, methotrexate, and arsenic trioxide, work in different ways to stop cancer cells from dividing so they stop growing or die. Tretinoin may help leukemia cells develop into normal white blood cells. It is not yet known which regimen is more effective for acute promyelocytic leukemia.
RATIONALE: Giving chemotherapy, such as busulfan and fludarabine phosphate, before a peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving methotrexate, tacrolimus, and antithymocyte globulin before and after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect). Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect. PURPOSE: This phase II trial is studying how well donor stem cell transplant works in treating patients with relapsed hematologic malignancies or secondary myelodysplasia previously treated with high-dose chemotherapy and autologous stem cell transplant .
RATIONALE: Monoclonal antibodies, such as alemtuzumab, can find cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Giving chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving tacrolimus and methotrexate after the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the best dose of alemtuzumab when given together with busulfan and cyclophosphamide followed by a donor stem cell transplant and to see how well it works in treating patients with hematologic cancer.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as gemtuzumab, can block cancer growth in different ways. Some find cancer cells and help kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Gemtuzumab may also stop the growth of promyelocytic leukemia by blocking blood flow to the cancer. Giving gemtuzumab together with combination chemotherapy may be more effective in treating promyelocytic leukemia. PURPOSE: This phase II trial is studying how well giving gemtuzumab together with combination chemotherapy works in treating patients with previously untreated promyelocytic leukemia.
RATIONALE: Tretinoin may help cancer cells become more like normal cells, and to grow and spread more slowly. Drugs used in chemotherapy, such as arsenic trioxide and idarubicin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving tretinoin together with arsenic trioxide with or without idarubicin may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving tretinoin together with arsenic trioxide with or without idarubicin works in treating patients with acute promyelocytic leukemia.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as gemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Sometimes the cancer may not need more treatment until it progresses. In this case, observation may be sufficient. It is not yet known whether combination chemotherapy is more effective than observation when given as maintenance therapy in treating acute promyelocytic leukemia. PURPOSE: This randomized phase III trial is studying tretinoin, mercaptopurine, and methotrexate to see how well they work when given as maintenance therapy compared with observation after combination chemotherapy in treating patients with acute promyelocytic leukemia. (Randomization and observation group closed as of 8/15/10)
RATIONALE: Vaccines made from a peptide may help the body build an effective immune response to kill cancer cells. Colony-stimulating factors, such as GM-CSF, increase the number of white blood cells and platelets found in bone marrow or peripheral blood. Giving vaccine therapy together with GM-CSF may be an effective treatment for acute myeloid leukemia. It is not yet known whether giving vaccine therapy together with GM-CSF is more effective than giving placebo together with GM-CSF in treating acute myeloid leukemia. PURPOSE: This randomized phase III trial is studying vaccine therapy and GM-CSF to see how well they work compared with a placebo and GM-CSF in treating patients with acute myeloid leukemia in remission.
RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood stem cell transplant helps stop the growth of cancer or abnormal cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil before the transplant may stop this from happening. PURPOSE: This clinical trial is studying how well umbilical cord blood stem cell transplant works in treating patients with hematologic cancer or other disease.
RATIONALE: Drugs used in chemotherapy, such as clofarabine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of clofarabine and cyclophosphamide in treating patients with relapsed or refractory acute leukemia, chronic myelogenous leukemia, or myeloproliferative disorders.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving combination chemotherapy works in treating patients with acute promyelocytic leukemia.
RATIONALE: Giving colony-stimulating factors, such as G-CSF, and certain chemotherapy drugs, helps stem cells move from the bone marrow to the blood so they can be collected. Treating stem cells collected from the patient's blood or bone marrow with chemotherapy in the laboratory removes any remaining cancer cells. Chemotherapy or radiation therapy is given to the patient to prepare the bone marrow for stem cell transplant. The treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well an autologous peripheral stem cell or bone marrow transplant using laboratory-treated cells works in treating patients with acute leukemia.
This phase I trial is studying the side effects and best dose of decitabine and FR901228 in treating patients with relapsed or refractory leukemia, myelodysplastic syndromes or myeloproliferative disorders. Drugs used in chemotherapy, such as decitabine and FR901228, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. FR901228 may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Giving decitabine together with FR901228 may kill more cancer cells.
RATIONALE: Drugs used in chemotherapy, such as fludarabine, work in different ways to stop cancer cells from dividing so they stop growing or die. 3-AP may help fludarabine kill more cancer cells by making them more sensitive to the drug. PURPOSE: This phase I trial is studying the side effects and best dose of fludarabine when given together with 3-AP in treating patients with relapsed or refractory acute leukemia, chronic leukemia, or high-risk myelodysplastic syndrome.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Thalidomide may stop the growth of cancer cells by stopping blood flow to the tumor. Combining chemotherapy with thalidomide may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combining fludarabine, carboplatin, and topotecan with thalidomide in treating patients who have relapsed or refractory acute myeloid leukemia, chronic myelogenous leukemia, or advanced myelodysplastic syndromes.