Treatment Trials

8 Clinical Trials for Various Conditions

Focus your search

TERMINATED
Yellow 560 Microscope for Intraoperative Visualization of Fluorescein Stained Intracranial Lesions
Description

The purpose of this study is to evaluate the effectiveness of using Fluorescein Sodium and the Yellow 560 microscope to aid in treatment of intracranial tumors and vascular lesions.

COMPLETED
A Comparison of Remifentanil and Dexmedetomidine for Craniotomy Perioperative Hemodynamics and Postoperative Pain
Description

This will be a randomized blinded clinical trial. Patients will be randomized to receive either a remifentanil or dexmedetomidine infusion for general anesthesia. The anesthesia team will know the result of randomization at induction. Data will be gathered by research personnel who will be blinded to the anesthetic method used. Patients will be blinded to the anesthetic they receive till they are discharged from the PACU when they will have the option to be unblinded. The Data Safety and -Toxicity Committee will review all serious adverse events and toxicity reports as well as annual reviews.

RECRUITING
A Feasibility Safety Study of Benign Centrally-Located Intracranial Tumors in Pediatric and Young Adult Subjects
Description

The goal of this prospective, non-randomized, single-arm, feasibility study is to develop data to evaluate the safety and feasibility of ExAblate 4000 treatment of benign intracranial tumors which require clinical intervention in pediatric and young adult subjects. Indication of Use: Ablation of benign intracranial tumors in children and young adults which are ExAblate accessible.

COMPLETED
Lapatinib Study for Children and Adults With Neurofibromatosis Type 2 (NF2) and NF2-Related Tumors
Description

The purpose of this study is to determine if Lapatinib has any effect on tumors found in patients with Neurofibromatosis Type 2 (NF2). NF2 is a condition that mainly affects the skin and nervous system. It causes non-cancerous tumors (which are known as neuromas) to grow on the nerves around a person's body. Some signs of NF2 include a gradual loss of hearing and tumors growing on the skin, the brain and the spinal cord which can lead to complications. Lapatinib is an oral drug that is approved by Food and Drug Administration (FDA) for other types of tumors, it is not approved by the FDA for treatment of NF2 related tumors. The investigators know a lot about how well it is tolerated, but the investigators do not know if it is effective in treating your condition, therefore it is considered to be an investigational medication. This study will test whether Lapatinib may shrink tumors commonly found in patients with NF2 or stop them from growing. This will help us to decide if Lapatinib should be used to treat NF2 patients in future. Lapatinib is a drug that has been used for over 10 years to treat various forms of cancer. It has not been studied for the treatment of tumors in NF2 patients.

TERMINATED
Gadobutrol Versus Gadopentetate Dimeglumine or Gadobenate Dimeglumine Before DCE-MRI in Diagnosing Patients With Multiple Sclerosis, Grade II-IV Glioma, or Brain Metastases
Description

This pilot clinical trial compares gadobutrol with standard of care contrast agents, gadopentetate dimeglumine or gadobenate dimeglumine, before dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain. Gadobutrol is a type of contrast agent that may increase DCE-MRI sensitivity for the detection of tumors or other diseases of the central nervous system. It is not yet known whether gadobutrol is more effective than standard of care contrast agents before DCE-MRI in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain.

COMPLETED
RO4929097, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Malignant Glioma
Description

This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.

COMPLETED
Bevacizumab and Cediranib Maleate in Treating Patients With Metastatic or Unresectable Solid Tumor, Lymphoma, Intracranial Glioblastoma, Gliosarcoma or Anaplastic Astrocytoma
Description

This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.

Conditions
Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaChildhood Burkitt LymphomaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Nasal Type Extranodal NK/T-cell LymphomaCutaneous B-cell Non-Hodgkin LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaProgressive Hairy Cell Leukemia, Initial TreatmentRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Hairy Cell LeukemiaSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-cell Leukemia/LymphomaStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Hodgkin LymphomaStage IV Childhood Large Cell LymphomaStage IV Childhood Lymphoblastic LymphomaStage IV Childhood Small Noncleaved Cell LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IVA Mycosis Fungoides/Sezary SyndromeStage IVB Mycosis Fungoides/Sezary SyndromeT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUnspecified Adult Solid Tumor, Protocol SpecificUnspecified Childhood Solid Tumor, Protocol SpecificWaldenström Macroglobulinemia
NOT_YET_RECRUITING
Avoiding Radiation Therapy Due to Intracranial Response to Chemotherapy, Targeted Therapy and/or Immuno-ONcology Therapy for Brain Metastases: Pilot Pragmatic Trial
Description

This pilot pragmatic trial evaluates the feasibility of avoiding radiation therapy in patients with brain metastases who demonstrate an intracranial response to systemic therapy-including immunotherapy, targeted therapy, and/or chemotherapy. The study will prospectively enroll 45 patients, divided into two cohorts: 30 with non-small cell lung cancer (NSCLC) receiving immunotherapy, and 15 with brain metastases from other solid tumors. Eligible participants must have at least one brain metastasis not planned for radiation or surgery and must be initiating or planning to initiate a systemic therapy regimen expected to penetrate the blood-brain barrier and achieve intracranial activity. All patients will undergo a re-evaluation brain MRI 4-8 weeks after initiating systemic therapy. If lesions are stable or regressing, patients will continue surveillance without radiation. If progression is noted, standard-of-care radiation may be administered at the discretion of the treating physician. The primary objective is to assess 6-month radiation therapy-free survival (RTFS) in NSCLC patients based on PD-L1 expression status. Secondary endpoints include intracranial progression-free survival, overall survival, radiation necrosis rate, and quality of life. This study seeks to inform future trial design and identify patients who may safely avoid brain radiation.