154 Clinical Trials for Various Conditions
This phase II trial tests how well olanzapine works in managing cancer cachexia in patients experiencing esophagogastric, hepatopancreaticobiliary, colorectal, or lung cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic) -associated appetite loss while receiving non-curative cancer therapy. Loss of appetite ("anorexia") in the setting of cancer is a key feature of "cachexia," a syndrome associated with loss of weight and muscle as well as weakness and fatigue. Olanzapine is a drug that targets key neurotransmitters (a type of molecule in the central nervous system that transmits messages to the rest of the body) that may stimulate appetite, restore caloric intake, minimize weight loss, and improve quality of life (QOL).
This phase I trial identifies the best dose, possible benefits and/or side effects of BAY 1895344 in combination with chemotherapy in treating patients with solid tumors or urothelial cancer that has spread to other places in the body (advanced). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cisplatin and gemcitabine are chemotherapy drugs that stop the growth of tumor cells by killing the cells. Combining BAY 1895344 with chemotherapy treatment (cisplatin, or cisplatin and gemcitabine) may be effective for the treatment of advanced solid tumors, including urothelial cancer.
The purpose of this study is to evaluate the efficacy and safety of tislelizumab as first line treatment in combination with chemotherapy in participants with advanced unresectable/metastatic esophageal squamous cell carcinoma (ESCC).
The purpose of this study was to evaluate the efficacy and safety of tislelizumab as second line treatment in participants with advanced unresectable/metastatic ESCC that had progressed during or after first line therapy.
This phase II trial compares the impact of subcutaneous (SC) nivolumab given in an in-home setting to an in-clinic setting on cancer care and quality of life. Currently, most drug-related cancer care is conducted in clinic type centers or hospitals which may isolate patients from family, friends and familiar surroundings for many hours per day. This separation adds to the physical, emotional, social, and financial burden for patients and their families. Traveling to and from medical facilities costs time, money, and effort and can be a disadvantage to patients living in rural areas, those with low incomes or poor access to transport. Studies have shown that cancer patients often feel more comfortable and secure being cared for in their own home environments. SC nivolumab in-home treatment may be safe, tolerable and/or effective when compared to in-clinic treatment and may reduce the burden of cancer and improve the quality of life in cancer patients.
In this multi-institution phase I/II trial, the investigators have chosen paclitaxel and carboplatin using a schedule and doses identical to those used in the CROSS trial. Following a run-in with nivolumab alone at 240 mg IVPB every 2 weeks for 2 doses, nivolumab at 240 mg every 2 weeks will be added to paclitaxel and carboplatin, which will be dosed according to the standard of care established by the CROSS trial: paclitaxel 50 mg/m2 weekly for 6 weeks and carboplatin AUC 2 weekly for 6 weeks. Concurrent radiation will be administered with chemotherapy at 1.8 Gy/fraction × 28 fractions to a total dose of 50.4 Gy, the standard radiation dose administered in the United States for trimodality therapy that includes concurrent therapy with carboplatin and paclitaxel. A decrease in dose to 41.4 Gy per the protocol established by van Hagen, et al. will be permitted before discontinuing therapy due to unacceptable toxicity. While the CROSS study administered only 5 weekly doses of chemotherapy during the 5 weeks of radiation, the higher dose of 50.4 Gy (1.8 Gy/fraction ×28 fractions over 5½ weeks) utilized in this study permits for a sixth dose during the additional week of radiation.
This is a proof-of-concept study designed to investigate HER3-DXd monotherapy in locally advanced or metastatic solid tumors. The study is enrolling cohorts of participants with melanoma \[cutaneous/acral\], squamous cell carcinomas of the head and neck (SCCHN), and HER2-negative gastric cancerovarian carcinoma, cervical cancer, endometrial cancer, bladder cancer, esophageal carcinoma, pancreatic carcinoma, and prostate cancer.
This is a Phase 1/2, multicenter, randomized, open-label umbrella platform study to evaluate the safety and efficacy of investigational agents with or without pembrolizumab and/or chemotherapy, for the treatment of participants with second line (2L) esophageal squamous cell carcinoma (ESCC) who have previously been exposed to PD-1/PD-L1 based treatment.
The primary purpose of this study is to see if Sym024 is safe and tolerable as monotherapy and in combination with Sym021 in patients with solid tumor malignancies.
This phase I trial studies the side effects of OBP-301 when given together with carboplatin, paclitaxel, and radiation therapy in treating patients with esophageal or gastroesophageal cancer that invades local or regional structures. OBP-301 is a virus that has been designed to infect and destroy tumor cells (although there is a small risk that it can also infect normal cells). Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving OBP-301 with chemotherapy and radiation therapy may work better than standard chemotherapy and radiation therapy in treating patients with esophageal or gastroesophageal cancer.
The primary objective is to assess the safety and tolerability of Toripalimab in subjects with various advanced malignancies and to evaluate the recommended Phase 2 dose. The secondary objectives are to: 1) describe the pharmacokinetic (PK) profile of Toripalimab, 2) evaluate antitumor activity of Toripalimab; 3) determine the immunogenicity of Toripalimab; 4) evaluate overall survival. The exploratory objectives are to: 1) evaluate biomarkers that may correlate with activity of Toripalimab, 2) evaluate pharmacodynamic effects of Toripalimab on its target receptor, programmed cell death 1 (PD-1), as well as effects on the immune system. 3) evaluate the utility of PD-L1 \& additional exploratory markers as biomarkers that could aid in selection of appropriate subjects for TAB001 therapy, and 4) identification of additional biomarkers correlating with response to treatment with TAB001.
A Phase Ib/II, open label, multi-center, randomized study designed to assess the safety, tolerability, pharmacokinetics and preliminary anti-tumor activity of immunotherapy-based treatment combinations in patients with locally advanced unresectable or metastatic G/GEJ cancer (hereafter referred to as gastric cancer) and esophageal cancer. Two cohorts of patients with gastric cancer have been enrolled in parallel in this study: the second-line (2L) Gastric Cancer Cohort consists of patients with gastric cancer who have progressed after receiving a platinum-containing or fluoropyrimide-containing chemotherapy regimen in the first-line setting, and the first-line (1L) Gastric Cancer Cohort consists of patients with gastric cancer who have not received prior chemotherapy in this setting. In each cohort, eligible patients will be assigned to one of several treatment arms. Additionally, a cohort of patients with esophageal cancer who have not received prior systemic treatment for their disease will be enrolled in this study. Eligible patients will be randomized to chemotherapy or the combination of chemotherapy with checkpoint inhibitor immunotherapy.
Background: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Lung cancer is the leading cause of cancer-related death in the United States. Most people with lung cancer are already in the advanced stages of the disease by the time they see a doctor. Researchers want to see if combining an approved drug with two new drugs can help. Objective: To study if tetrahydrouridine-decitabine (THU-DAC) with pembrolizumab is safe and effective in people with non-small cell lung cancer that cannot be removed by surgery. Eligibility: People 18 years and older who have NSCLC that cannot be removed by surgery Design: Participants will be screened with * Medical history * Physical exam * Blood and urine tests * Tests of heart and lung function They may have a small tumor sample taken (biopsy). They may have tumor scans. Before starting treatment, participants will repeat the screening tests. They will also give a stool sample. The study will be done in 3-week cycles for up to 6 cycles. * Participants will take the 2 study drugs by mouth 3-5 days a week. * Participants will get pembrolizumab in a vein for 30 minutes 1 day each cycle. Participants will keep a study medication diary. During cycle 1, participants will have blood taken multiple times on days 1 and 2. Every 3 cycles, participants will repeat screening tests. Participants will have a mandatory tumor biopsy. When they finish treatment, participants will have a physical exam and blood tests.
This randomized phase II trial studies how well nivolumab or expectant observation following ipilimumab, nivolumab, and surgery work in treating patients with high-risk mucosal melanoma that is restricted to the site of origin without evidence of spread, has spread to a local and regional area of the body, or has come back. Monoclonal antibodies, such as nivolumab and ipilimumab, may interfere with the ability of tumor cells to grow and spread. Sometimes the mucosal melanoma may not need more treatment until it progresses. In this case, observation may be sufficient. It is not known if nivolumab or expectant observation following ipilimumab, nivolumab, and surgery may be better in treating patients with mucosal melanoma.
Evaluate mFOLFOX6 (5-Fluorouracil, Leucovorin and Oxaliplatin) chemotherapy as induction treatment prior to standard neoadjuvant chemoradiation to decrease the rate of distant recurrence among patients with locally advanced esophageal cancer.
This pilot phase II trial studies how well giving bevacizumab and combination chemotherapy together before surgery works in treating patients with locally advanced esophageal or stomach cancer. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and oxaliplatin work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab and combination chemotherapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving these treatments after surgery may kill any tumor cells that remain after surgery.
RATIONALE: Drugs used in chemotherapy, such as paclitaxel and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab may stop the growth of esophageal cancer by blocking blood flow to the tumor. It is not yet known whether giving paclitaxel and cisplatin together with radiation therapy is more effective with or without cetuximab in treating esophageal cancer. PURPOSE: This randomized phase III trial is comparing how well giving paclitaxel and cisplatin together with radiation therapy works with or without cetuximab in treating patients with locally advanced esophageal cancer.
RATIONALE: Drugs used in chemotherapy, such as docetaxel and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Irinotecan may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Irinotecan and docetaxel may also make tumor cells more sensitive to radiation therapy. Giving combination chemotherapy together with radiation therapy may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of docetaxel when given together with irinotecan and radiation therapy with or without cisplatin in treating patients with locally advanced esophageal cancer.
The present clinical trial is a dose comparison of a multi-component active immunotherapy designed to stimulate an immune reaction to specific tumor associated antigens which are highly expressed on a large number of solid cancers.
To study the safety and feasibility of stereotactic radiation dose escalation following neoadjuvant chemotherapy with concurrent conventionally fractionated radiation, by evaluating the acute and late toxicity of treatment.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as pemetrexed disodium and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Pemetrexed disodium may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving radiation therapy together with pemetrexed disodium and carboplatin before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. PURPOSE: This phase II trial is studying how well giving radiation therapy together with pemetrexed disodium and carboplatin works in treating patients with locally advanced esophageal cancer that can be removed by surgery.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as cisplatin and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Cisplatin and fluorouracil may also make tumor cells more sensitive to radiation therapy. Gefitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving radiation therapy together with combination therapy and gefitinib before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving these treatments after surgery may kill any tumor cells that remain after surgery. PURPOSE: This phase II trial is studying how well giving radiation therapy together with combination chemotherapy and gefitinib before and after surgery works in treating patients with advanced esophageal or gastroesophageal junction cancer.
RATIONALE: Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab may also stop the growth of esophageal cancer by blocking blood flow to the tumor and by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving cetuximab together with combination chemotherapy and radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving cetuximab together with combination chemotherapy and radiation therapy works in treating patients with locally advanced esophageal cancer that cannot be removed by surgery.
This phase II trial is studying erlotinib hydrochloride to see how well it works in treating patients with advanced esophageal cancer or stomach cancer. Erlotinib hydrochloride may stop the growth of cancer by blocking the enzymes necessary for tumor cell growth.
Participants will receive study treatment with agenT-797, botensilimab, balstilimab, ramucirumab, and paclitaxel. When participants start each agent will depend on how their disease is affecting them.
Background: Previously we have demonstrated induction of tumor antigen and tumor suppressor gene expression in lung cancer cells following exposure to the DNA demethylating agent, Decitabine (DAC). We have also demonstrated that DAC mediated target gene expression and apoptosis can be significantly enhanced in cancer cells by subsequent exposure to the histone deacetylase (HDAC) inhibitor Depsipeptide FK228 (DP). Furthermore, we have demonstrated that following DAC, or DAC/DP exposure, cancer cells can be recognized by cytolytic T cells specific for the cancer testis antigen, NY-FSO-1. This Phase I study will evaluate gene induction in thoracic oncology patients mediated by sequential DAC/DP treatment with or without the selective COX-2 inhibitor, celecoxib. Objectives: Evaluation of the pharmacokinetics and toxicity of continuous 72-hour intravenous Decitabine (DAC) infusion followed by 4-hour intravenous infusion of Depsipeptide FK228 (DP) with or without oral celecoxib in patients with unresectable cancers involving the lungs or pleura. Analysis of NY-ESO-1, p16 and p21 expression in cancer specimens before and after sequential Decitabine/Depsipeptide treatment. Analysis of serologic response to NY-ESO-1 before and after sequential drug treatment. Analysis of apoptosis in tumor biopsies before and after sequential Decitabine/Depsipeptide treatment. Refinement of laser capture microdissection and micro-array techniques for analysis of gene expression profiles in tumor tissues. Eligibility: Patients with histologically or cytologically proven primary small cell or non-small cell lung cancers, advanced esophageal cancers, pleural mesotheliomas, or non-thoracic cancers with metastases to the lungs or pleura. Patients must be 18 years or older with an ECOG performance status of 0-2 and have adequate pulmonary reserve evidenced by FEV1 and DLCO greater than the 30% predicted, and less than 50 mm Hg and p02 greater than 60 mm Hg on room air ABG. Patients must have a platelet count greater than 100.000. an ANC equal to or greater than 1500 without transfusion or cytokine support, a normal PT, and adequate hepatic function as evidenced by a total bilirubin of less than 1.5 x upper limits of normal. Serum creatinine less than or equal to 1.6 mg/ml or the creatinine clearance must be greater than 70 ml/min/1.73m(2). Design: Patients with inoperable malignancies involving lungs or pleura will receive two cycles of 72-hour intravenous infusion of Decitabine followed by 4-hour Depsipeptide infusion using a Phase I study design. Decitabine will be administered by continuous infusion on days 1-4, and patient cohorts will receive escalating doses of Depsipeptide administered on day 4 and day 10 of a 34 day cycle. Once the MTD and toxicities for sequential DAC/DP have been identified, additional cohorts of 6 lung cancer patients and 6 mesothelioma patients will receive sequential DAC/DP administered at the MTD as outlined above with celecoxib (400mg bid) administered on days 4-34 of each treatment cycle, as a means to enhance target cell apoptosis and facilitate anti-tumor immune recognition/response. Pharmacokinetics, systemic toxicity, and response to therapy will be recorded. Tumor biopsies will be obtained prior to, and after therapy to evaluate expression of NY-ESO-1 tumor antigen, as well as p16 and p21 tumor suppressor genes, which are known to be modulated by chromatin structure. Additional analysis will be undertaken to evaluate the extent of apoptosis in tumor tissues, and to determine if immune recognition of NY-ESO-1 can be demonstrated following sequential DAC?DP +/- celecoxib treatment. As the exact set of comparisons and analyses to be performed will be determined following completion of the trial and will be based on limited numbers of patients, the analyses will be considered exploratory and hypothesis generating rather than definitive. A total of 40 patients will be enrolled.
A randomised phase III, double-blind, placebo-controlled trial with 2:1 (regorafenib : placebo)
The purpose of this study is to evaluate the safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) profiles of RMC-4630 and cobimetinib in adult participants with relapsed/refractory solid tumors with specific genomic aberrations and to identify the recommended Phase 2 dose (RP2D); and to evaluate the safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) profiles of RMC-4630 and osimertinib in adult participants with EGFR mutation-positive locally advanced or metastatic NSCLC.
This is a first-in-human, open-label, multicenter, Phase 1 study to evaluate the safety, tolerability and preliminary efficacy of IPH4502 and to determine the recommended Phase 2 dose (RP2D) in advanced solid tumors that are known to express Nectin-4
Cancer is a condition where cells in a specific part of body grow and reproduce uncontrollably. The purpose of this study is to assess adverse events and change in disease activity when ABBV-400 is given to adult participants to treat advanced solid tumors. ABBV-400 is an investigational drug being developed for the treatment of advanced solid tumors. Study doctors put the participants in groups called cohorts. Each cohort receives ABBV-400 alone (monotherapy) followed by a safety follow-up period. Approximately 260 adult participants with hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), biliary tract cancers (BTC), esophageal squamous cell carcinoma (ESCC), triple negative breast cancer (TNBC), hormone receptor+/human epidermal growth factor receptor 2 negative (HER2-) breast cancer (hormone receptor-positive \[HR+\]/HER2-breast cancer \[BC\]), head and neck squamous-cell-carcinoma (HNSCC), Platinum Resistant High Grade Epithelial Ovarian Cancer (PROC)/primary peritoneal/fallopian tube cancer, or advanced solid tumors, will be enrolled in the study in approximately 54 sites worldwide. In the each cohorts, participants with the following advanced solid tumor indications: HCC, PDAC, BTC, ESCC, TNBC, HR+/HER2-BC, HNSCC, and PROC/primary peritoneal/fallopian tube cancer will receive intravenous (IV) ABBV-400 monotherapy for up to 2 years during and up to the treatment period with an additional safety follow-up period of up to 2 years. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at an approved institution (hospital or clinic). The effect of the treatment will be frequently checked by medical assessments, blood tests, questionnaires and side effects.