13 Clinical Trials for Various Conditions
This study is being conducted to evaluate whether the investigational drug Dovitinib, can shrink or slow the growth of cancer in patients with certain types of neuroendocrine tumors. This study will also further evaluate the safety of this drug.
This phase II trial studies how well lenvatinib works in treating patients with pheochromocytoma or paraganglioma that has spread to other places in the body or cannot be removed by surgery. Lenvatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well the addition of olaparib to the usual treatment, temozolomide, works in treating patients with neuroendocrine cancer (pheochromocytoma or paraganglioma) that has spread from where it first started (primary site) to other places in the body (metastatic) or cannot be removed by surgery (unresectable). Poly (adenosine diphosphate \[ADP\]-ribose) polymerases (PARPs) are proteins that help repair deoxyribonucleic acid (DNA) mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving olaparib with temozolomide may shrink or stabilize the cancer in patients with pheochromocytoma or paraganglioma better than temozolomide alone.
This phase II trial studies how well 177Lu-DOTATATE works in treating patients with rare endocrine cancers that have spread from where they started to nearby tissue or lymph nodes (locally advanced), spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Radioactive drugs, such as 177Lu-DOTATATE, may carry radiation directly to cancer cells and not harm normal cells. 177Lu-DOTATATE may help to control endocrine cancers compared to standard treatment.
The objectives of this study are: * To assess the efficacy of lanreotide given every 4 weeks in participants with advanced or metastatic paraganglioma/ pheochromocytoma. * To assess the toxicity and safety of lanreotide in participants with advanced or metastatic paraganglioma/ pheochromocytoma. * To document the effects of lanreotide on markers of biochemical activity in participants with advanced or metastatic paraganglioma/ pheochromocytoma. Primary endpoints: • Assess efficacy by estimating the tumor growth rate while a patient is enrolled on study and comparing the growth rates on lanreotide to the pre-enrolment growth rate. Secondary endpoints include measurement of: * Overall survival (OS) * Progression-free survival (PFS) * Overall response rate (ORR) according to RECIST defined as partial response (PR) + complete response (CR) * Magnitude of reduction in levels of 24-hour urinary metanephrines, catecholamines and magnitude of reduction in serum chromogranin A, evaluated every two months while enrolled on study.
This pilot phase II trial studies how well cabozantinib s-malate works in treating patients with pheochromocytomas or paragangliomas that have spread from the primary site to other places in the body and cannot be removed by surgery. Cabozantinib s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking the growth of new blood vessels necessary for tumor growth.
This phase II trial studies how well pazopanib hydrochloride works in treating patients with advanced or progressive malignant pheochromocytoma or paraganglioma. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
RATIONALE: Everolimus and vatalanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Giving everolimus together with vatalanib may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of everolimus and vatalanib in treating patients with advanced solid tumors.
RATIONALE: Radiolabeled octreotide can locate tumor cells and deliver radioactive tumor-killing substances to them without harming normal cells. PURPOSE: This phase I trial is to study the safety and effectiveness of radiolabeled octreotide in treating children who have advanced or refractory solid tumors.
This phase II trial studies how well pembrolizumab works in treating patients with rare tumors that cannot be removed by surgery or have spread to other parts of the body. Monoclonal antibodies, such as pembrolizumab, may block specific proteins found on white blood cells which may strengthen the immune system and control tumor growth.
RATIONALE: Hepatic arterial infusion uses a catheter to deliver anticancer substances directly into the liver. Drugs used in chemotherapy, such as melphalan, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving drugs in different ways may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving an hepatic arterial infusion of melphalan together with hepatic perfusion works in treating patients with unresectable liver cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of oxaliplatin with or without floxuridine and leucovorin in treating patients who have metastatic cancer of the peritoneum.
This study is Phase I/IIa First-in-Human Study of \[212Pb\]VMT-α-NET Targeted Alpha-Particle Therapy for Advanced SSTR2 Positive Neuroendocrine Tumors