38 Clinical Trials for Various Conditions
The primary objective of this study is to determine the maximum tolerated dose, dose limiting toxicity, safety and tolerability of TH-302 in patients with acute leukemias, advanced phase chronic myelogenous leukemia (CML), high risk myelodysplastic syndromes, advanced myelofibrosis or relapsed/refractory chronic lymphocytic leukemia (CLL).
The purpose of this study is to determine the maximum tolerated dose (MTD) of TAK-901 in subjects with advanced hematological malignancies, and to further assess the safety and tolerability of TAK-901 at or below the MTD in an expanded cohort of subjects in order to select a dose for future studies.
The purpose of this study is to evaluate the safety, tolerability, and preliminary efficacy of INCB057643 as monotherapy or combination with ruxolitinib for participants with myelofibrosis (MF) and other myeloid neoplasms.
A phase II study testing the efficacy of combined AZD1775 with AraC or single agent activity of AZD1775 in three arms: Arm A has subjects age 60 years or older who are newly diagnosed with AML receiving the combination of the drugs; Arm B has subjects who are have relapsed/refractory AML and HMA failure MDS patients being allocated to either the combination Arm B or single agent AZD1775 Arm C.
This phase II trial compares the effect of ASTX727 in combination with iadademstat to ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). ASTX727 is a combination of two drugs, cedazuridine and decitabine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Iadademstat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving ASTX727 in combination with iadademstat may be more effective than ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative MPNs.
A Phase 1, first-in-human study of EP31670, a dual BET and CBP/p300 inhibitor in patients with targeted advanced solid tumors and Hematological Malignancies
The purpose of this research study is to test the safety of a new three drug combination of navitoclax, decitabine, and venetoclax to treat advanced myeloid malignancies. The names of the drugs involved in this study are: * Venetoclax * Decitabine * Navitoclax
This is a Phase 1 cohort, dose-escalation, dose-expansion study of PRT543 in patients with advanced cancers who have exhausted available treatment options. The purpose of this study is to define a safe dose and schedule to be used in subsequent development of PRT543.
This phase I/II trial studies the best dose of ruxolitinib when given together with CPX-351 and to see how well they work in treating patients with accelerated phase or blast phase myeloproliferative neoplasm. Ruxolitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. CPX-351 is a mixture of 2 chemotherapy drugs (daunorubicin and cytarabine) given for leukemia in small fat-based particles (liposomes) to improve the drug getting into cancer cells. Giving ruxolitinib and CPX-351 may work better in treating patients with secondary acute myeloid leukemia compared to CPX-351 alone.
This phase II trial studies how well topotecan hydrochloride and carboplatin with or without veliparib work in treating patients with myeloproliferative disorders that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced), and acute myeloid leukemia or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving topotecan hydrochloride, carboplatin, and veliparib may work better in treating patients with myeloproliferative disorders and acute myeloid leukemia or chronic myelomonocytic leukemia compared to topotecan hydrochloride and carboplatin alone.
The purpose of this study is to test the effectiveness of a drug called pembrolizumab in patients with Myeloproliferative Neoplasm (MPN); chronic phase (MF-CP), accelerated phase (MPN-AP), or blast phase (MF-BP). Myelofibrosis neoplasm (MPN) is a group of diseases of the bone marrow in which excessive cells are produced. Pembrolizumab also known as Keytruda is a drug that has recently been approved in the United Stated by the Food and Drug Administration (FDA) for the treatment of patients with unresectable or metastatic melanoma and disease progression. Pembrolizumab is experimental in the treatment of MPN. The researchers want to find out what effects, good and /or bad it has on participants and the disease. Participants qualify to take part in this research study if have been diagnosed with a MPN blood disorder called myelofibrosis (MF). Accelerated (10-19% blasts in the blood or bone marrow) and blast phase (\>20% blasts in the blood or bone marrow) MPN has been a difficult disease to treat. The term "blasts" refers to immature cells found in the bone marrow. They are not fully developed, and therefore, do not yet carry out any particular function within the body. Funds for conducting this research are provided by Merck and Company, the manufacturer of the study drug pembrolizumab.
This is an open-label, dose-escalation/dose-expansion study of INCB059872 in subjects with advanced malignancies. The study will be conducted in 4 parts. Part 1 (mono therapy dose escalation) will determine the recommended dose(s) of INCB059872 for dose expansion, based on maximum tolerated dose and/or a tolerated pharmacologically active dose. Part 2 (dose expansion) will further determine the safety, tolerability, efficacy, PK, and PD of the selected monotherapy dose(s) in AML/MDS, SCLC, myelofibrosis, Ewing sarcoma, and poorly differentiated neuroendocrine tumors. Part 3 will determine the recommended dose(s) of INCB059872 in combination with azacitadine and all-trans retinoic acid in AML and in combination with nivolumab in SCLC. Part 4 will further determine the safety, tolerability, efficacy, PK, and PD of the selected combination dose(s) in Part 3.
The purpose of the Study is to select a dose and assess the safety and tolerability of INCB057643 as a monotherapy (Part 1 and Part 2) and in combination with standard-of-care (SOC) agents (Part 3 and Part 4) for subjects with advanced malignancies. Part 1 will determine the maximum tolerated dose of INCB057643 and/or a tolerated dose that demonstrates sufficient pharmacologic activity. Part 2 will further evaluate the safety, preliminary efficacy, PK, and PD of the dose(s) selected in Part 1 in select tumor types including solid tumors, lymphomas and other hematologic malignancies. Part 3 will determine the tolerated dose of INCB057643 in combination with select SOC agents; and assess the safety and tolerability of the combination therapy in select advanced solid tumors and hematologic malignancies. Part 4 will further evaluate the safety, preliminary efficacy, PK, and PD of the selected dose combination from Part 3 in 4 specific advanced solid tumor and hematologic malignancies.
This is an open-label, dose-escalation study of the proviral integration site of Moloney murine leukemia virus (PIM) kinase inhibitor INCB053914 in subjects with advanced malignancies. The study will be conducted in 4 parts. Part 1 (monotherapy dose escalation) will evaluate safety and determine the maximum tolerated dose of INCB053914 monotherapy and the recommended phase 2 dose(s) (a tolerated pharmacologically active dose that will be taken forward into the remaining parts of the study). Part 2 (monotherapy dose expansion) will further evaluate the safety, efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of the recommended Phase 2 dose(s). Part 3 (combination dose finding) will evaluate safety of INCB053914 in combination with select standard of care (SOC) agents and will identify the optimal INCB053914 dose in combination with conventional SOC regimens to take forward into Part 4. Part 4 (combination dose expansion) will further evaluate the safety, efficacy and pharmacokinetics of the recommended Phase 2 dose combination(s).
This phase I trial studies the side effects and best dose of anti-PR1/HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.
This study is a dose escalation, and cohort expansion study in subjects with advanced cancer for which no standard therapy exists. Subjects must have received prior treatment for cancer that has not worked, or has stopped working.
This was a study of INCB054329 given to patients with advanced malignancies that were conducted in three treatment groups. Each treatment group had a dose escalation (Part 1) and a dose expansion (Part 3), two of the treatment groups also had an intra-patient dose titration (Part 2).
New conditioning regimens are still needed to maximize efficacy and limit treatment-related deaths of allogeneic transplantation for advanced hematologic malignancies. Over the past several years, the investigators have evaluated several new conditioning regimens that incorporate fludarabine, a novel immunosuppressant that has limited toxicity and that has synergistic activity with alkylating agents. Recent data have suggested that fludarabine may be used in combination with standard doses of oral or IV busulfan, thus reducing the toxicity previously observed with cyclophosphamide/ busulfan regimens.
RATIONALE: Giving total marrow and total lymph node irradiation together with low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). PURPOSE: This phase I trial is studying the side effects and best dose of total marrow and total lymph node irradiation when given together with fludarabine and melphalan followed by donor stem cell transplant in treating patients with advanced hematological cancer that has not responded to treatment.
RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood transplant with reduced intensity conditioning works in treating patients with advanced hematological cancer or other disease.
This study consists of two phases: the first portion of the study is a Phase 1 dose escalation study to determine the maximum tolerated dose and the dose limiting toxicities of SB1518 when given as a single agent orally once daily in subjects with advanced myeloid malignancies; the second portion of the study is a Phase 2 study to define the efficacy and safety profile of single-agent SB1518 at the recommended dose in subjects with chronic idiopathic myelofibrosis (CIMF).
RATIONALE: Bortezomib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the abnormal cells. PURPOSE: This clinical trial is studying the side effects and how well bortezomib works in treating patients with advanced myeloproliferative disorders.
This phase I trial is studying the side effects and best dose of belinostat when given together with azacitidine in treating patients with advanced hematologic cancers or other diseases. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with azacitidine may kill more cancer cells.
RATIONALE: Tacrolimus and mycophenolate mofetil may be an effective treatment for graft-versus-host disease caused by donor stem cell transplantation. PURPOSE: This phase II trial is studying how well giving tacrolimus together with mycophenolate mofetil works in preventing acute graft-versus-host disease in patients who are undergoing donor stem cell transplantation for advanced hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of pyroxamide in treating patients who have advanced cancer.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of imatinib mesylate in treating patients who have advanced cancer and liver dysfunction
RATIONALE: Antiemetic drugs, such as ondansetron, may help to reduce or prevent nausea and vomiting in patients with advanced cancer. PURPOSE: This randomized phase III trial is studying how well ondansetron works compared to a placebo in treating patients with advanced cancer and chronic nausea and vomiting that is not caused by cancer therapy.
Randomized phase I trial to study the effectiveness of tipifarnib in treating patients who have advanced hematologic cancer. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die.
RATIONALE: EMD 121974 may stop the growth of cancer by stopping blood flow to the tumor. PURPOSE: Phase I trial to study the effectiveness of EMD 121974 in treating patients who have locally advanced or metastatic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumors from dividing so they stop growing or die. Chemoprotective drugs, such as amifostine, may protect normal cells from the side effects of chemotherapy. PURPOSE: Phase I trial to study the effectiveness of amifostine plus combination chemotherapy in treating patients with advanced cancer.