30 Clinical Trials for Various Conditions
This phase II trial studies how well topotecan hydrochloride and carboplatin with or without veliparib work in treating patients with myeloproliferative disorders that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced), and acute myeloid leukemia or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving topotecan hydrochloride, carboplatin, and veliparib may work better in treating patients with myeloproliferative disorders and acute myeloid leukemia or chronic myelomonocytic leukemia compared to topotecan hydrochloride and carboplatin alone.
RATIONALE: Bortezomib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the abnormal cells. PURPOSE: This clinical trial is studying the side effects and how well bortezomib works in treating patients with advanced myeloproliferative disorders.
The primary objective of this study is to assess the safety and efficacy of performing unrelated stem cell transplants using intravenous busulfan and fludarabine as preparative therapy and tacrolimus plus methotrexate as the GVHD prophylaxis regimen. The goal is to demonstrate safety, aiming for a transplant related mortality rate (TRM) of \< or equal to 40% at 100 days. A TRM of \> or equal to 60% will be considered unacceptable. Another goal is to demonstrate efficacy by showing and overall survival of \>40% at 1-year following transplant.
This phase II trial studies the side effects of salsalate when added to venetoclax and decitabine or azacitidine in treating patients with acute myeloid leukemia or myelodysplasia/myeloproliferative disease that has spread to other places in the body (advanced). Drugs used in chemotherapy, such as salsalate, venetoclax, decitabine, and azacitidine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
The purpose of Phase I of this study is to test the safety and tolerability of the investigational drug, OTS167, and that of Phase II of this study is to confirm the potential response benefit of OTS167. OTS167 is a maternal embryonic leucine zipper kinase (MELK) inhibitor which demonstrated antitumor properties in laboratory tests. It is being developed as an anti-cancer drug. In this study OTS167 will be administrated to patients with AML, ALL, advanced MDSs, advanced MPNs, or advanced CML.
Reduced intensity conditioning (RIC) has emerged and been increasingly adopted as a modality to allow preparative conditioning pre transplant to be tolerated by older adults or those patients that are otherwise unfit for myeloablative conditioning. In this study, we aim to use RIC followed by matched related/unrelated donor, 7/8 matched related/unrelated donor, or haploidentical donor peripheral blood stem cell transplantation. Standard strategies to control the alloreactivity following HCT utilize immunosuppressive or cytotoxic medications. In this study, we explore donor graft engineering to enrich for immmunoregulatory populations to facilitate post transplantation immune reconstitution while minimizing graft versus host disease (GVHD) with post-transplant immunosuppressive agents.
New conditioning regimens are still needed to maximize efficacy and limit treatment-related deaths of allogeneic transplantation for advanced hematologic malignancies. Over the past several years, the investigators have evaluated several new conditioning regimens that incorporate fludarabine, a novel immunosuppressant that has limited toxicity and that has synergistic activity with alkylating agents. Recent data have suggested that fludarabine may be used in combination with standard doses of oral or IV busulfan, thus reducing the toxicity previously observed with cyclophosphamide/ busulfan regimens.
This is a clinical research study designed to evaluate whether the administration of a vaccine to patients after transplant consisting of a minor histocompatibility antigen (mHag peptide) mixed with G-CSF (a drug intended to stimulate the immune system) can stimulate increased graft versus leukemia (GVL) responses without causing graft-versus-host disease (GVHD).
RATIONALE: Giving total marrow and total lymph node irradiation together with low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). PURPOSE: This phase I trial is studying the side effects and best dose of total marrow and total lymph node irradiation when given together with fludarabine and melphalan followed by donor stem cell transplant in treating patients with advanced hematological cancer that has not responded to treatment.
RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood transplant with reduced intensity conditioning works in treating patients with advanced hematological cancer or other disease.
Gemcitabine and carboplatin are two standard chemotherapy drugs used to treat tumors of the urothelial tract. These drugs do not shrink tumors in all patients and when they do, it is generally for a limited amount of time. This has led scientists to look for different ways to treat cancer. New drugs have been developed to treat cancer that work differently than standard chemotherapy drugs. One new class of drugs are called 'angiogenesis-inhibitors'. These drugs attempt to decrease the blood supply to tumors. By doing so, this may limit the tumor's source of oxygen and nutrients and prevent the tumor from growing. Bevacizumab is an anti-angiogenic drug. In some other cancers such as colon cancer and lung cancer, combining bevacizumab with standard chemotherapy shrinks tumors in a greater proportion of patients and makes patients live longer than using standard chemotherapy alone. This has never been tested in urothelial cancer and we do not know if bevacizumab will have the same effects in this disease. The purpose of this study is to find out what effects, good and/or bad, the combination of gemcitabine, carboplatin, and bevacizumab has on you and your cancer.
RATIONALE: Tacrolimus and mycophenolate mofetil may be an effective treatment for graft-versus-host disease caused by donor stem cell transplantation. PURPOSE: This phase II trial is studying how well giving tacrolimus together with mycophenolate mofetil works in preventing acute graft-versus-host disease in patients who are undergoing donor stem cell transplantation for advanced hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of pyroxamide in treating patients who have advanced cancer.
The goal of this clinical research study is to find the highest safe dose of the anti-CD33 immunotoxin HuM-195/rGel that can be given to patients with advanced myeloid malignancies. This treatment will be given to patients whose leukemia has not responded to prior chemotherapy.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Motexafin gadolinium may increase the effectiveness of doxorubicin by making tumor cells more sensitive to the drug. PURPOSE: Phase I trial to study the effectiveness of combining motexafin gadolinium with doxorubicin in treating patients who have recurrent or metastatic cancer.
RATIONALE: Antiemetic drugs, such as ondansetron, may help to reduce or prevent nausea and vomiting in patients with advanced cancer. PURPOSE: This randomized phase III trial is studying how well ondansetron works compared to a placebo in treating patients with advanced cancer and chronic nausea and vomiting that is not caused by cancer therapy.
Randomized phase I trial to study the effectiveness of tipifarnib in treating patients who have advanced hematologic cancer. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die.
RATIONALE: EMD 121974 may stop the growth of cancer by stopping blood flow to the tumor. PURPOSE: Phase I trial to study the effectiveness of EMD 121974 in treating patients who have locally advanced or metastatic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumors from dividing so they stop growing or die. Chemoprotective drugs, such as amifostine, may protect normal cells from the side effects of chemotherapy. PURPOSE: Phase I trial to study the effectiveness of amifostine plus combination chemotherapy in treating patients with advanced cancer.
Phase I trial to study the effectiveness of combining interleukin-12 and interferon alfa in treating patients who have residual, recurrent, or metastatic malignant melanoma or other advanced cancer that has not responded to standard therapy. Interleukin-12 may stimulate a person's white blood cells to kill cancer cells. Interferon alfa may interfere with the growth of the cancer cells. Combining interleukin-12 with interferon alfa may kill more cancer cells.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining topotecan, fluorouracil, and leucovorin in treating patients who have advanced cancer.
RATIONALE: Monoclonal antibodies can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase I trial to study the effectiveness of monoclonal antibodies in treating patients who have advanced cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of decitabine in treating patients with stage III or stage IV melanoma or other advanced cancer that has not responded to previous therapy.
International registry for cancer patients evaluating the feasibility and clinical utility of an Artificial Intelligence-based precision oncology clinical trial matching tool, powered by a virtual tumor boards (VTB) program, and its clinical impact on pts with advanced cancer to facilitate clinical trial enrollment (CTE), as well as the financial impact, and potential outcomes of the intervention.
The purpose of this study is to determine the safe dose of EPZ-5676, to evaluate the safety of EPZ-5676 in patients with advanced hematologic malignancies, and to conduct a preliminary assessment of the anti-leukemia activity of EPZ-5676 in patients with acute leukemias bearing rearrangements of the MLL gene. Currently this study is in the MLL-r restricted/expansion phase and is only enrolling patients with rearrangements involving the MLL gene, including 11q23 or partial tandem duplications (PTD).
This is an open-label, two-part Phase 2 study investigating CGT9486 for the treatment of patients with Advanced Systemic Mastocytosis (AdvSM), including patients with Aggressive SM (ASM), SM with Associated Hematologic Neoplasm (SM-AHN), and Mast Cell Leukemia (MCL).
Current protocols use G-CSF to mobilize hematopoietic progenitor cells from matched sibling and volunteer unrelated donors. Unfortunately, this process requires four to six days of G-CSF injection and can be associated with side effects, most notably bone pain and rarely splenic rupture. BL-8040 is given as a single SC injection, and collection of cells occurs on the same day as BL-8040 administration. This study will evaluate the safety and efficacy of this novel agent for hematopoietic progenitor cell mobilization and allogeneic transplantation based on the following hypotheses: * Healthy HLA-matched donors receiving one injection of BL-8040 will mobilize sufficient CD34+ cells (at least 2.0 x 10\^6 CD34+ cells/kg recipient weight) following no more than two leukapheresis collections to support a hematopoietic cell transplant. * The hematopoietic cells mobilized by SC BL-8040 will be functional and will result in prompt and durable hematopoietic engraftment following transplantation into HLA-identical siblings with advanced hematological malignancies using various non-myeloablative and myeloablative conditioning regimens and regimens for routine GVHD prophylaxis. * If these hypotheses 1 and 2 are confirmed after an interim safety analysis of the data, then the study will continue and include recruitment of haploidentical donors.
This is an open-label, dose-escalation study of the proviral integration site of Moloney murine leukemia virus (PIM) kinase inhibitor INCB053914 in subjects with advanced malignancies. The study will be conducted in 4 parts. Part 1 (monotherapy dose escalation) will evaluate safety and determine the maximum tolerated dose of INCB053914 monotherapy and the recommended phase 2 dose(s) (a tolerated pharmacologically active dose that will be taken forward into the remaining parts of the study). Part 2 (monotherapy dose expansion) will further evaluate the safety, efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of the recommended Phase 2 dose(s). Part 3 (combination dose finding) will evaluate safety of INCB053914 in combination with select standard of care (SOC) agents and will identify the optimal INCB053914 dose in combination with conventional SOC regimens to take forward into Part 4. Part 4 (combination dose expansion) will further evaluate the safety, efficacy and pharmacokinetics of the recommended Phase 2 dose combination(s).
This phase I trial is studying the side effects and best dose of belinostat when given together with azacitidine in treating patients with advanced hematologic cancers or other diseases. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with azacitidine may kill more cancer cells.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of busulfan and melphalan followed by donor bone marrow transplantation in treating patients who have advanced hematologic cancer.