18 Clinical Trials for Various Conditions
This pilot phase I trial studies how well itacitinib works in treating patients with sarcomas that do not respond to treatment (refractory) and have spread to other parts of the body (advanced/metastatic). Itacitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This trial will evaluate safety and efficacy of Letetresgene autoleucel (GSK3377794) in participants with advanced myxoid/round cell liposarcoma or high-grade myxoid liposarcoma.
The primary purpose of this sub study is to assess the safety, tolerability and determine recommended Phase 2 dose (RP2D) of GSK3901961 in HLA A\*02:01, HLA-A\*02:05 and/or HLA A\*02:06 positive participants with New York esophageal squamous cell carcinoma (NY ESO 1) and/or Cancer testis antigen 2 (LAGE 1a) positive previously treated metastatic Non-Small Cell Lung Cancer (NSCLC) and previously treated, advanced (metastatic or unresectable) Synovial Sarcoma/ Myxoid/Round Cell Liposarcoma SS/MRCLS.
To assess the safety, tolerability and determine recommended phase 2 dose (RP2D) of GSK3845097 in HLA-A\*02:01, HLA-A\*02:05 and/or HLA-A\*02:06 positive participants with New York esophageal squamous cell carcinoma (NY-ESO)-1 and/or Cancer testis antigen 2 (LAGE-1a) positive, previously treated, advanced (metastatic or unresectable) Synovial Sarcoma (SS) and Myxoid/Round Cell Liposarcoma (MRCLS).
This trial will evaluate the safety and efficacy of first time in human engineered T-cell therapies, in participants with advanced tumors.
This is a study to investigate the efficacy and safety of ADP-A2M4 in HLA-A\*02 eligible and MAGE-A4 positive subjects with metastatic or inoperable (advanced) Synovial Sarcoma (Cohort 1, 2 and 3 ) or MRCLS (Cohort 1) .
This phase I trial studies the side effects and best way to give NY-ESO-1 specific T cells after cyclophosphamide in treating patients with advanced synovial sarcoma or myxoid/round cell liposarcoma. Placing a gene that has been created in the laboratory into white blood cells may make the body build an immune response to kill tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving NY-ESO-1 specific T cells with cyclophosphamide may kill more tumor cells.
This phase I trial studies how well autologous NY-ESO-1-specific CD8-positive T lymphocytes (modified T lymphocytes \[T cells\]), chemotherapy, and aldesleukin with or without dendritic cell-targeting lentiviral vector ID-LV305 (LV305) and immunotherapeutic combination product CMB305 (CMB305) work in treating participants with sarcoma that has spread to other places in the body (advanced) or that has come back (recurrent). Modified T cells used in this study are taken from participants, are changed in a laboratory, and may "kill" some types of tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide may help the body get ready to receive the modified T cells. Interleukins, such as aldesleukin, are proteins made by white blood cells and other cells in the body and may help regulate immune response. LV305 and CMB305 may help stimulate the immune system. Giving modified T cells, chemotherapy, aldesleukin, LV305, and CMB305 may work better in treating participants with sarcoma.
This phase II trial studies how well pembrolizumab and interferon gamma-1b work in treating patients with stage IB-IVB mycosis fungoides and Sezary syndrome that has come back (relapsed) or has not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Interferon gamma-1b may boost the immune system activity. Giving pembrolizumab and interferon gamma-1b together may work better in treating patients with stage IB-IVB mycosis fungoides and Sezary syndrome.
This trial will evaluate safety and efficacy of human engineered T-cell therapies, in participants with advanced tumors. This trial is a sub study of the Master study NCT03967223.
This trial will evaluate safety and efficacy of human engineered T-cell therapies, in participants with advanced tumors. This trial is a sub study of the Master study NCT03967223.
This phase II trial compares the effect of immunotherapy with ipilimumab and nivolumab alone to their combination with cabozantinib in treating patients with soft tissue sarcoma that has spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply and may also prevent the growth of new blood vessels that tumors need to grow. By these actions it may help slow or stop the spread of cancer cells. Adding cabozantinib to the combination of ipilimumab and nivolumab may be better in stopping or slowing the growth of tumor compared to ipilimumab and nivolumab alone in patients with advanced soft tissue sarcoma.
This 2-part study will evaluate safety, tolerability, and clinical efficacy of DS-2243a as a treatment for participants with advanced solid tumors.
This is a first-in-human (FIH), Phase 1/2, open-label, multicenter study to assess safety and determine the recommended Phase 2 dose (RP2D) of BOXR1030 administration after lymphodepleting chemotherapy (LD chemotherapy) in subjects with glypican-3 positive (GPC3+) advanced solid tumors.
This is an open-label Phase 2 randomized study that will examine the use of the study agents, CMB305 (sequentially administered LV305 which is a dendritic cell-targeting viral vector expressing the New York Esophageal Squamous Cell Carcinoma 1 gene \[NY-ESO-1\] and G305 which is a NY-ESO-1 recombinant protein plus glucopyranosyl lipid adjuvant-stable emulsion \[GLA-SE\]) in combination with atezolizumab or atezolizumab alone, in participants with locally advanced, relapsed or metastatic sarcoma (synovial or myxoid/round cell liposarcoma) expressing the NY-ESO-1 protein. There is no formal primary hypothesis for this study.
This trial will evaluate safety and efficacy of human engineered T-cell therapies, in participants with advanced tumors.
This randomized phase I/II clinical trial is studying the side effects and best dose of gamma-secretase/notch signalling pathway inhibitor RO4929097 when given together with vismodegib and to see how well they work in treating patients with advanced or metastatic sarcoma. Vismodegib may slow the growth of tumor cells. Gamma-secretase/notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vismodegib together with gamma-secretase/notch signalling pathway inhibitor RO4929097 may be an effective treatment for sarcoma.
This phase I trial is studying the side effects and best dose of cixutumumab given together with doxorubicin hydrochloride and to see how well they work in treating patients with unresectable, locally advanced, or metastatic soft tissue sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving monoclonal antibody cixutumumab together with doxorubicin hydrochloride may kill more tumor cells.