Treatment Trials

83 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Testing the Addition of Ipatasertib to Usual Chemotherapy and Radiation for Head and Neck Cancer
Description

This phase I/Ib trial tests the safety and best dose of ipatasertib in combination with the usual treatment approach using chemotherapy together with radiation therapy ("chemo-radiation") in patients with head and neck cancer. Ipatasertib is in a class of medications called protein kinase B (AKT) inhibitors. It may stop the growth of tumor cells and may kill them. Cisplatin which is a chemotherapy used in this trial is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Radiation therapy uses high energy to kill tumor cells and shrink tumors. Giving ipatasertib in combination with chemo-radiation may be better than chemo-radiation alone in treating patients with advanced head and neck cancer.

COMPLETED
Image-guided Proton Therapy for the Treatment of Locally Advanced Unresectable Head and Neck Cancer
Description

This phase I trial studies the side effects of image-guided hyper-fractioned proton therapy in treating patients with head and neck cancer that has spread to nearby tissue or lymph nodes (locally advanced) and cannot be removed by surgery (unresectable). Radiation therapy uses high energy protons to kill tumor cells and shrink tumors. The change in dose radiation frequency and dose investigated in this study may help to better control the tumor and prevent it from coming back or growing. The goal of this study is to test a new radiation schedule that administers more radiation to the tumor tissue using image guided proton therapy for patients that have a high risk of having a tumor recurrence (the tumor comes back after treatment).

COMPLETED
Sodium Thiosulfate in Preventing Ototoxicity for Squamous Cell Cancer Patients Undergoing Chemoradiation With Cisplatin
Description

This phase II trial investigates how well sodium thiosulfate works in preventing ototoxicity (hearing loss/damage) in patients with squamous cell cancer of the head and neck that has spread to nearby tissue or lymph nodes (locally advanced) who are undergoing a chemoradiation. Sodium thiosulfate is a type of medication used to treat cyanide poisoning and to help lessen the side effects from cisplatin. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with radiation therapy may kill more tumor cells. The purpose of this trial is to find out whether it is feasible to give sodium thiosulfate 4 hours after each cisplatin infusion along with standard of care radiation therapy in patients with head and neck cancer. Giving sodium thiosulfate after cisplatin may help decrease the risk of hearing loss.

ACTIVE_NOT_RECRUITING
Testing the Addition of M3814 (Peposertib) to Radiation Therapy for Patients With Advanced Head and Neck Cancer Who Cannot Take Cisplatin
Description

This phase I trial investigates the side effects and best dose of peposertib when given together with radiation therapy in treating patients with head and neck cancer that has spread to other places in the body (advanced) who cannot take cisplatin. Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. This trial aims to see whether adding peposertib to radiation therapy is safe and works well in treating patients with head and neck cancer.

COMPLETED
Combination Chemotherapy Plus Radiation Therapy in Treating Patients With Advanced Mouth Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining more than one chemotherapy drug with radiation therapy may kill more tumor cells. PURPOSE: Phase I/II trial to study the effectiveness of combination chemotherapy plus radiation therapy in treating patients who have advanced mouth cancer.

RECRUITING
BiCaZO: A Study Combining Two Immunotherapies (Cabozantinib and Nivolumab) to Treat Patients With Advanced Melanoma or Squamous Cell Head and Neck Cancer, an immunoMATCH Pilot Study
Description

This phase II trial studies the good and bad effects of the combination of drugs called cabozantinib and nivolumab in treating patients with melanoma or squamous cell head and neck cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine how quickly patients can be divided into groups based on biomarkers in their tumors. A biomarker is a biological molecule found in the blood, other body fluids, or in tissues that is a sign of a normal or abnormal process or a sign of a condition or disease. A biomarker may be used to see how well the body responds to a treatment for a disease or condition. The two biomarkers that this trial is studying are "tumor mutational burden" and "tumor inflammation signature." Another purpose of this trial is to help doctors learn if cabozantinib and nivolumab shrink or stabilize the cancer, and whether patients respond differently to the combination depending on the status of the biomarkers.

ACTIVE_NOT_RECRUITING
Testing the Use of Investigational Drugs Atezolizumab and/or Bevacizumab With or Without Standard Chemotherapy in the Second-Line Treatment of Advanced-Stage Head and Neck Cancers
Description

This phase II/III compares the standard therapy (chemotherapy plus cetuximab) versus adding bevacizumab to standard chemotherapy, versus combination of just bevacizumab and atezolizumab in treating patients with head and neck cancer that has spread to other places in the body (metastatic or advanced stage) or has come back after prior treatment (recurrent). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Cisplatin and carboplatin are in a class of chemotherapy medications known as platinum-containing compounds. They work by killing, stopping, or slowing the growth of cancer cells. Docetaxel is in a class of chemotherapy medications called taxanes. It stops cancer cells from growing and dividing and may kill them. The addition of bevacizumab to standard chemotherapy or combination therapy with bevacizumab and atezolizumab may be better than standard chemotherapy plus cetuximab in treating patients with recurrent/metastatic head and neck cancers.

ACTIVE_NOT_RECRUITING
Radiation Therapy With Durvalumab or Cetuximab in Treating Patients With Locoregionally Advanced Head and Neck Cancer Who Cannot Take Cisplatin
Description

This phase II/III trial studies how well radiation therapy works with durvalumab or cetuximab in treating patients with head and neck cancer that has spread to a local and/or regional area of the body who cannot take cisplatin. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cetuximab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. It is not known if radiation therapy with durvalumab will work better than the usual therapy of radiation therapy with cetuximab in treating patients with head and neck cancer.

TERMINATED
Stereotactic Body Radiation Therapy in Treating Patients With High Risk Locally Advanced Head and Neck Cancer
Description

This phase I trial studies the side effects and best dose of stereotactic body radiation therapy (SBRT) in treating participants with head and neck cancer that has spread from where it started to nearby tissue or lymph nodes and is at high risk for continuing to spread because the participant cannot undergo standard chemotherapy. Stereotactic body radiation therapy is a specialized radiation therapy that delivers radiation directly to the tumor in smaller doses over several days, which may kill more tumor cells and cause less damage to normal tissue.

COMPLETED
Onalespib in Treating Patients With Locoregionally Advanced Squamous Cell Carcinoma of the Head and Neck Receiving Radiation Therapy and Cisplatin
Description

This phase I trial studies the side effects and best dose of onalespib when given together with intensity-modulated radiation therapy (IMRT) and cisplatin in treating patients with squamous cell carcinoma of the head and neck that has spread from where it started to nearby tissue or lymph nodes. Onalespib works by blocking a protein called HSP90. HSP90 helps protect cells from stress and supports many other proteins that cause cell growth. When HSP90 is blocked, tumor cell growth may be slowed or stopped and may die more easily when treated with chemotherapy and radiation. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. IMRT is a specialized radiation therapy that delivers beams of radiation of different intensities aimed at the tumor from many angles and may kill more tumor cells and cause less damage to normal tissue. Giving onalespib with cisplatin and IMRT may kill more tumor cells.

COMPLETED
Lenalidomide and Cetuximab in Treating Patients With Advanced Colorectal Cancer or Head and Neck Cancer
Description

This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.

Conditions
Recurrent Colon CarcinomaRecurrent Hypopharyngeal Squamous Cell CarcinomaRecurrent Laryngeal Squamous Cell CarcinomaRecurrent Laryngeal Verrucous CarcinomaRecurrent Lip and Oral Cavity Squamous Cell CarcinomaRecurrent Metastatic Squamous Cell Carcinoma in the Neck With Occult PrimaryRecurrent Nasal Cavity and Paranasal Sinus Squamous Cell CarcinomaRecurrent Nasopharyngeal Keratinizing Squamous Cell CarcinomaRecurrent Oral Cavity Verrucous CarcinomaRecurrent Oropharyngeal Squamous Cell CarcinomaRecurrent Rectal CarcinomaRecurrent Salivary Gland CarcinomaSalivary Gland Squamous Cell CarcinomaSquamous Cell Carcinoma Metastatic in the Neck With Occult PrimaryStage IV Hypopharyngeal Squamous Cell Carcinoma AJCC v7Stage IV Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7Stage IVA Colon Cancer AJCC v7Stage IVA Laryngeal Squamous Cell Carcinoma AJCC v7Stage IVA Laryngeal Verrucous Carcinoma AJCC v7Stage IVA Lip and Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7Stage IVA Major Salivary Gland Cancer AJCC v7Stage IVA Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7Stage IVA Oral Cavity Cancer AJCC v6 and v7Stage IVA Oropharyngeal Squamous Cell Carcinoma AJCC v7Stage IVA Rectal Cancer AJCC v7Stage IVB Colon Cancer AJCC v7Stage IVB Laryngeal Squamous Cell Carcinoma AJCC v7Stage IVB Laryngeal Verrucous Carcinoma AJCC v7Stage IVB Lip and Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7Stage IVB Major Salivary Gland Cancer AJCC v7Stage IVB Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7Stage IVB Oral Cavity Cancer AJCC v6 and v7Stage IVB Oropharyngeal Squamous Cell Carcinoma AJCC v7Stage IVB Rectal Cancer AJCC v7Stage IVC Laryngeal Squamous Cell Carcinoma AJCC v7Stage IVC Laryngeal Verrucous Carcinoma AJCC v7Stage IVC Lip and Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7Stage IVC Major Salivary Gland Cancer AJCC v7Stage IVC Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7Stage IVC Oral Cavity Cancer AJCC v6 and v7Stage IVC Oropharyngeal Squamous Cell Carcinoma AJCC v7Tongue Carcinoma
WITHDRAWN
ONYX-015 With Cisplatin and Fluorouracil in Treating Patients With Advanced Head and Neck Cancer
Description

RATIONALE: A specially modified virus called ONYX-015 may be able to kill tumor cells while leaving normal cells undamaged. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining ONYX-015 with chemotherapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of ONYX-015 combined with cisplatin and fluorouracil in treating patients who have advanced head and neck cancer.

COMPLETED
Radiation Therapy Plus Fludarabine in Treating Patients With Locally Advanced Cancer of the Mouth, Pharynx, or Larynx
Description

RATIONALE: Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with radiation therapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of radiation therapy plus fludarabine in treating patients who have locally advanced cancer of the mouth, pharynx, or larynx.

UNKNOWN
Combination Chemotherapy Plus Radiation Therapy in Treating Patients With Previously Untreated Advanced Cancer of the Mouth, Pharynx, or Larynx
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining radiation therapy with chemotherapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy plus radiation therapy in treating patients who have previously untreated advanced cancer of the mouth, pharynx, or larynx.

TERMINATED
Active Immunization of Patients With Carcinoma of Oral Cavity or Oropharynx With Autologous Dendritic Cells Transfected With DNA From Autologous Tumor
Description

The primary goal of this study is to determine if the vaccine can be safely given to subjects, and to see what side effects occur (both good and bad) when they are given this experimental tumor vaccine. During this study, investigators intend to watch for tumor response while examining the effects of this vaccine on the body's immune system after it is given.

WITHDRAWN
Hypofractionated Radiation Therapy Followed by Surgery in Treating Patients With Advanced Squamous Cell Carcinoma of the Oral Cavity
Description

This phase I/II trial studies how well hypofractionated radiation therapy followed by surgery works in treating patients with squamous cell carcinoma of the oral cavity that has spread to other places in the body. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving hypofractionated radiation therapy before surgery may shrink the tumor making it easier to be removed, may reduce the risk of the cancer coming back, and may be a better treatment for squamous cell carcinoma of the oral cavity.

COMPLETED
Cytochlor and Tetrahydrouridine as Radiosensitizers and Cisplatin Combined With Radiation Therapy in Treating Patients With Advanced Squamous Cell Carcinoma of the Oral Cavity (Mouth) or Oropharynx (Throat)
Description

RATIONALE: Radiation therapy uses high-energy x-rays to damage tumor cells. Radiosensitizing drugs, such as cytochlor and tetrahydrouridine, may make tumor cells more sensitive to radiation therapy. Drugs used in chemotherapy, such as cisplatin work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Combining radiosensitizers with chemotherapy and radiation therapy may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of cytochlor when given together with tetrahydrouridine, cisplatin and radiation therapy in treating patients with advanced squamous cell carcinoma of the oral cavity (mouth) or oropharynx (throat).

WITHDRAWN
Vorinostat in Combination With Chemoradiation in Locally Advanced HPV Negative HNSCC
Description

The purpose of this study is to learn more about a drug called Vorinostat (an experimental drug) in combination with chemoradiation. The intention of this study is to learn if this drug is safe for the participants and whether this drug with chemoradiation is able to further increase the clinical efficacy of chemoradiation, which is an approved therapy. The main question it aims to answer is: How may Vorinostat interact with standard chemotherapy and radiation therapy in head and neck cancer? Participants will receive the study drug (Vorinostat) as a pre-treatment, followed by standard chemoradiation.

RECRUITING
NBTXR3 Activated by Radiotherapy for Patients With Advanced Cancers Treated With An Anti-PD-1 Therapy
Description

The 1100 study is an open-label, Phase I, dose escalation and expansion prospective clinical study to assess the safety of intratumoral injection of NBTXR3 activated by radiotherapy in combination with anti-PD-1 therapy.

TERMINATED
Ficlatuzumab, Cisplatin and IMRT in Locally Advanced Head and Neck Squamous Cell Carcinoma
Description

Head and neck squamous cell carcinoma (HNSCC) is the most common cancer arising in the upper aerodigestive tract, and is the sixth leading incident cancer worldwide. Despite advances in multimodality therapy, 5-year overall survival (OS) is 40-60%, and has increased only incrementally in the past two decades. The current standard of care for primary nonsurgical management of locally advanced HNSCC is concurrent cisplatin-radiotheray, which significantly improved OS, progression-free survival, and locoregional control compared with radiotherapy alone in the landmark Intergroup trial 0126. The MET proto-oncogene encodes c-Met, a heterodimeric growth factor receptor bound exclusively by its ligand, hepatocyte growth factor (HGF). In the laboratory, activation of the HGF/c-Met pathway is associated with resistance to cisplatin and radiotherapy in HNSCC. We hypothesize that the addition of an HGF/c-Met pathway inhibitor to cisplatin-radiotherapy may improve outcomes in HNSCC. Ficlatuzumab (AV-299) is a humanized HGF-inhibitory IgG1 monoclonal antibody. The primary objective of this study is to establish the recommended phase II dose (RP2D) of the combination of ficlatuzumab, cisplatin and intensity-modulated radiotherapy (IMRT), in patients with locally advanced HNSCC. The dose-finding study design will follow a Narayana k-in-a-row design with k set to 3 to target a 33% DLT rate. In the dose-finding phase, a total of either 10 or 14 patients will be treated. If no DLTs are observed among 10 patients, the highest dose tier will be declared the RP2D. Otherwise the RP2D will be estimated from DLTs across all dose levels by isotonic regression. The secondary objective is to estimate biomarker association with preliminary clinical response. We will evaluate biomarkers of HGF/cMet pathway activation in tumor tissue, plasma, and immune cells.

TERMINATED
Selenomethionine in Reducing Mucositis in Patients With Locally Advanced Head and Neck Cancer Who Are Receiving Cisplatin and Radiation Therapy
Description

This randomized phase II trial is studying how well selenomethionine (SLM) works in reducing mucositis in patients with locally advanced head and neck cancer who are receiving cisplatin and radiation therapy. SLM may help prevent or reduce mucositis, or mouth sores, in patients receiving chemotherapy and radiation therapy. It is not yet known whether SLM is more effective than a placebo in reducing mucositis

WITHDRAWN
Phase I/II Study of Postoperative Adjuvant Chemoradiation for Advanced-Stage Cutaneous Squamous Cell Carcinoma of the Head and Neck (cSCCHN)
Description

This phase I/II trial studies the side effects and best dose of linsitinib when given together with erlotinib hydrochloride and radiation therapy after surgery in treating patients with advanced or recurrent head and neck cancer. Erlotinib hydrochloride and linsitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving radiation therapy together with erlotinib hydrochloride and linsitinib may kill more tumor cells. Giving these treatments after surgery may kill any tumor cells that remain after surgery.

COMPLETED
TLR8 Agonist VTX-2337 and Cetuximab in Treating Patients With Locally Advanced, Recurrent, or Metastatic Squamous Cell Cancer of Head and Neck
Description

This phase I trial studies the side effects and best dose of TLR8 Agonist VTX-2337 when given together with cetuximab in treating patients with locally advanced, recurrent, or metastatic squamous cell cancer of the head and neck (SCCHN). Biological therapies, such as TLR8 Agonist VTX-2337 may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving TLR8 Agonist VTX-2337 together with cetuximab may kill more tumor cells.

Conditions
Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell CarcinomaRecurrent Metastatic Squamous Neck Cancer With Occult PrimaryRecurrent Salivary Gland CancerRecurrent Squamous Cell Carcinoma of the HypopharynxRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityRecurrent Verrucous Carcinoma of the LarynxRecurrent Verrucous Carcinoma of the Oral CavitySalivary Gland Squamous Cell CarcinomaStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the HypopharynxStage III Squamous Cell Carcinoma of the LarynxStage III Squamous Cell Carcinoma of the Lip and Oral CavityStage III Squamous Cell Carcinoma of the NasopharynxStage III Squamous Cell Carcinoma of the OropharynxStage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage III Verrucous Carcinoma of the LarynxStage III Verrucous Carcinoma of the Oral CavityStage IV Salivary Gland CancerStage IVA Squamous Cell Carcinoma of the LarynxStage IVA Squamous Cell Carcinoma of the Lip and Oral CavityStage IVA Squamous Cell Carcinoma of the OropharynxStage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IVA Verrucous Carcinoma of the LarynxStage IVA Verrucous Carcinoma of the Oral CavityStage IVB Squamous Cell Carcinoma of the LarynxStage IVB Squamous Cell Carcinoma of the Lip and Oral CavityStage IVB Squamous Cell Carcinoma of the OropharynxStage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IVB Verrucous Carcinoma of the LarynxStage IVB Verrucous Carcinoma of the Oral CavityStage IVC Squamous Cell Carcinoma of the LarynxStage IVC Squamous Cell Carcinoma of the Lip and Oral CavityStage IVC Squamous Cell Carcinoma of the OropharynxStage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IVC Verrucous Carcinoma of the LarynxStage IVC Verrucous Carcinoma of the Oral CavityTongue Cancer
TERMINATED
Phase I Study of IMRT and Molecular-Image Guided Adaptive Radiation Therapy for Advanced HNSCC
Description

RATIONALE: Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. CT and PET scans and treatment-planning systems may help in planning radiation therapy. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with cisplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of intensity-modulated image guided adaptive radiation therapy when given together with cisplatin in treating patients with locally advanced head and neck squamous cell cancer

ACTIVE_NOT_RECRUITING
RT With or Without Cetuximab in Treating Patients Who Have Undergone Surgery for Locally Advanced Head and Neck Cancer
Description

RATIONALE: Giving radiation therapy that uses a 3-dimensional (3-D) image of the tumor to help focus thin beams of radiation directly on the tumor, and giving radiation therapy in higher doses over a shorter period of time, may kill more tumor cells and have fewer side effects. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether radiation therapy is more effective when given alone or together with cetuximab in treating patients with head and neck cancer that has been removed by surgery. PURPOSE: This randomized phase III trial is studying radiation therapy to see how well it works compared with radiation therapy given together with cetuximab in treating patients who have undergone surgery for locally advanced head and neck cancer.

TERMINATED
Sunitinib, Cetuximab, and Radiation Therapy in Treating Patients With Locally Advanced or Recurrent Squamous Cell Carcinoma of the Head and Neck
Description

This phase I trial is studying the side effects and best dose of sunitinib when given together with cetuximab and radiation therapy in treating patients with locally advanced or recurrent squamous cell carcinoma of the head and neck. Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving sunitinib together with cetuximab and radiation therapy may kill more tumor cells.

Conditions
Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell CarcinomaRecurrent Metastatic Squamous Neck Cancer With Occult PrimaryRecurrent Salivary Gland CancerRecurrent Squamous Cell Carcinoma of the HypopharynxRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityRecurrent Verrucous Carcinoma of the LarynxRecurrent Verrucous Carcinoma of the Oral CavitySalivary Gland Squamous Cell CarcinomaStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the HypopharynxStage III Squamous Cell Carcinoma of the LarynxStage III Squamous Cell Carcinoma of the Lip and Oral CavityStage III Squamous Cell Carcinoma of the NasopharynxStage III Squamous Cell Carcinoma of the OropharynxStage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage III Verrucous Carcinoma of the LarynxStage III Verrucous Carcinoma of the Oral CavityStage IV Salivary Gland CancerStage IV Squamous Cell Carcinoma of the HypopharynxStage IV Squamous Cell Carcinoma of the LarynxStage IV Squamous Cell Carcinoma of the Lip and Oral CavityStage IV Squamous Cell Carcinoma of the NasopharynxStage IV Squamous Cell Carcinoma of the OropharynxStage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IV Verrucous Carcinoma of the LarynxStage IV Verrucous Carcinoma of the Oral CavityTongue CancerUntreated Metastatic Squamous Neck Cancer With Occult Primary
COMPLETED
Stereotactic Radiosurgery in Treating Patients With Locally Advanced or Recurrent Head and Neck Cancer
Description

RATIONALE: Stereotactic radiosurgery may be able to send x-rays directly to the tumor and cause less damage to normal tissue. PURPOSE: This phase I trial is studying the side effects of stereotactic radiosurgery in treating patients with locally advanced or recurrent head and neck cancer.

TERMINATED
Ph 2 Intensification Regimen for Previously Untreated, Resectable, Advanced Squamous Cell Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as cisplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving combination chemotherapy together with radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving these treatments after surgery may kill any tumor cells that remain after surgery. PURPOSE: This phase II trial is studying how well giving cisplatin and paclitaxel together with radiation therapy and surgery works in treating patients with advanced cancer of the oral cavity, oropharynx, or hypopharynx that can be removed by surgery.

COMPLETED
Pemetrexed and Oxaliplatin in Treating Patients With Locally Advanced Head and Neck Cancer
Description

RATIONALE: Pemetrexed may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving pemetrexed together with oxaliplatin may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving pemetrexed together with oxaliplatin works in treating patients with locally advanced head and neck cancer.

TERMINATED
Cyclophosphamide and Cryoablation in Treating Patients With Advanced or Metastatic Epithelial Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Cryoablation kills cancer cells by freezing them. Giving chemotherapy together with cryoablation may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving cyclophosphamide together with cryoablation works in treating patients with advanced or metastatic epithelial cancer.

Conditions