15 Clinical Trials for Various Conditions
This phase II trial compares the effect of folate receptor alpha dendritic cells (FRαDCs) to placebo in treating patients with stage III or IV ovarian, fallopian tube or primary peritoneal cancer. FRαDCs, a dendritic cell vaccine, is made from a person's white blood cells. The white blood cells are treated in the laboratory to make dendritic cells (a type of immune cell) mixed with folate receptor alpha (FRalpha), a protein found in high levels on ovarian tumor cells. FRαDCs work by boosting the immune system to recognize and destroy the tumor cells by targeting the FRalpha protein on the tumor cell. Placebo is an inactive substance that looks the same as, and is given the same way as, the active drug or treatment being tested. The effects of the active drug are compared to the effects of the placebo. Giving FRαDCs may work better in preventing or delaying recurrence compared to placebo in patients with stage III or IV ovarian, fallopian tube, or primary peritoneal cancer.
This phase I/II trial tests the safety, side effects, best dose, and effectiveness of multi-epitope folate receptor alpha-loaded dendritic cell vaccine (FRalphaDC) with pembrolizumab in treating patients with ovarian, fallopian tube, or primary peritoneal cancer (collectively known as ovarian cancer) that that has come back (after a period of improvement) (recurrent). Ovarian cancer is the most lethal gynecologic malignancy in the United States. While the majority of patients achieve a remission from ovarian cancer with the combination of aggressive cytoreductive surgery and cytotoxic chemotherapy, over 80% of patients develop recurrence within 3 years of completion of treatment. Additional treatments are needed for recurrence, but the standard treatment modalities are non-curative in nature due to the development of drug resistance. As such, there is a great unmet need for treatment strategies that utilize new mechanisms to which drug resistance does not develop. FRalphaDC is a dendritic cell vaccine that is made from the white blood cells collected from a procedure call apheresis. The white blood cells are treated to make dendritic cells, which will then be incubated with peptides, which are pieces of a protein known as "folate receptor alpha" (FRalpha), a protein that is found in high levels on ovarian cancer cells. Dendritic cell vaccines work by boosting the immune system (a system in the body that protect against infection) to recognize and destroy the tumor cells by targeting the FRalpha protein. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving FRalphaDC vaccine with pembrolizumab may be a safe and effective treatment for recurrent ovarian cancer.
The purpose of the dose escalation phase is to evaluate the safety profile of escalating doses and dose schedules of NXP800. In the expansion phase the preliminary efficacy in subjects with ARID1a mutated ovarian clear cell and ovarian endometrioid cancers will be estimated.
This phase I trial studies the side effects and best dose of raptor/rictor-mammalian target of rapamycin (mTOR) (TORC1/2) inhibitor MLN0128 when given in combination with bevacizumab in treating patients with glioblastoma, a type of brain tumor, or a solid tumor that has spread and not responded to standard treatment. TORC1/2 inhibitor MLN0128 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Bevacizumab may also stop the progression of tumors by blocking the growth of new blood vessels necessary for tumor growth.
This phase II trial studies how well temsirolimus and bevacizumab work in treating patients with advanced endometrial, ovarian, liver, carcinoid, or islet cell cancer. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of cancer by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.
RATIONALE: Colony stimulating factors, such as sargramostim (GM-CSF), may stimulate the immune system in different ways and stop tumor cells from growing and may also increase the number of immune cells found in bone marrow or peripheral blood and help the immune system recover from the side effects of chemotherapy. Drugs used in chemotherapy, such as paclitaxel albumin-stabilized nanoparticle formulation, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving GM-CSF together with paclitaxel albumin-stabilized nanoparticle formulation may be an effective treatment for ovarian cancer, fallopian tube cancer, and primary peritoneal cancer. PURPOSE: This phase II trial is studying how well giving GM-CSF together with paclitaxel albumin-stabilized nanoparticle formulation works in treating patients with advanced ovarian cancer, fallopian tube cancer, or primary peritoneal cancer that did not respond to previous chemotherapy
RATIONALE: Biological therapies, such as denileukin difitox, may stimulate the immune system in different ways and may prevent tumor cells from growing. PURPOSE: This phase I trial is studying the side effects and best dose of denileukin diftitox in treating patients with advanced refractory ovarian cancer, primary peritoneal carcinoma, or epithelial fallopian tube cancer.
RATIONALE: Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or stopping them from dividing. Giving chemotherapy drugs before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. PURPOSE: This phase II trial is studying how well giving paclitaxel together with carboplatin before surgery works in treating patients with advanced ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cavity cancer.
RATIONALE: Immunotoxins can locate tumor cells and kill them without harming normal cells. Immunotoxin therapy may be effective in treating advanced solid tumors. PURPOSE: This phase I trial is studying the side effects and best dose of immunotoxin therapy in treating patients with recurrent unresectable advanced solid tumors.
Phase I trial to study the effectiveness of vaccine therapy with or without sargramostim in treating patients who have advanced or metastatic cancer. Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may make tumor cells more sensitive to the vaccine and may kill more tumor cells
RATIONALE: Vaccines made from a person's white blood cells that have been treated in the laboratory may make the body build an immune response to kill tumor cells. PURPOSE: Phase I trial to study the effectiveness of vaccine therapy in treating patients who have advanced or metastatic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of TLK286 in treating patients who have advanced ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer.
RATIONALE: Immunotoxins can locate tumor cells and kill them without harming normal cells. Immunotoxin therapy may be an effective treatment for advanced cancer. PURPOSE: Phase I trial to study the effectiveness of immunotoxins in treating patients who have advanced cancer.
This phase III trial compares minimally invasive surgery (MIS) to laparotomy in treating patients with stage IIIC-IV ovarian, primary peritoneal, or fallopian tube cancer who are receiving chemotherapy before and after surgery (neoadjuvant chemotherapy). MIS is a surgical procedure that uses small incision(s) and is intended to produce minimal blood loss and pain for the patient. Laparotomy is a surgical procedure which allows the doctors to remove some or all of the tumor and check if the disease has spread to other organs in the body. MIS may work the same or better than standard laparotomy after chemotherapy in prolonging the return of the disease and/or improving quality of life after surgery.
RATIONALE: Inserting a gene that has been created in the laboratory into a person's white blood cells may make the body build an immune response to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of gene therapy in treating patients who have cancer that has not responded to previous therapy.