9 Clinical Trials for Various Conditions
This is a prospective pilot study, the primary aim of which is to determine whether the presence of 18F FLT imaging signal uptake abnormalities correlate with clinically validated evidence of hematopoietic malignant disease (e.g. MRD, molecular, flow or histology) after immunotherapy and other treatments.
This is an open-label, Phase 1/2 study designed to characterize the safety, tolerability, Pharmacokinetics(PK), and preliminary antitumor activity of AVM0703 administered as a single intravenous (IV) infusion to patients with lymphoid malignancies.
This phase I trial is studying the side effects and best dose of obatoclax mesylate when given together with vincristine sulfate, doxorubicin hydrochloride, and dexrazoxane hydrochloride in treating young patients with relapsed or refractory solid tumors, lymphoma, or leukemia. Obatoclax mesylate may stop the growth of cancer cells by blocking some of the proteins needed for cell growth and causing the cells to self-destruct. Drugs used in chemotherapy, such as vincristine sulfate, doxorubicin hydrochloride, and dexrazoxane hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving obatoclax mesylate together with combination chemotherapy may kill more cancer cells.
This phase II trial studies how well giving an umbilical cord blood transplant together with cyclophosphamide, fludarabine, and total-body irradiation (TBI) works in treating patients with hematologic diseases. Giving chemotherapy, such as cyclophosphamide, fludarabine and thiotepa, and TBI before a donor cord blood transplant (CBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after transplant may stop this from happening in patients with high-risk hematologic diseases.
This phase I trial studies the side effects and best dose of inotuzumab ozogamicin when given together with combination chemotherapy in treating patients with relapsed or refractory acute leukemia. Immunotoxins, such as inotuzumab ozogamicin, can find cancer cells that express cluster of differentiation (CD)22 and kill them without harming normal cells. Drugs used in chemotherapy, such as cyclophosphamide, vincristine sulfate, and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving inotuzumab ozogamicin together with combination chemotherapy may kill more cancer cells.
This trial is evaluating the safety and tolerability of venetoclax with chemotherapy in pediatric and young adult patients with hematologic malignancies, including myelodysplastic syndrome (MDS), acute myeloid leukemia derived from myelodysplastic syndrome (MDS/AML), and acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LBL). The names of the study drugs involved in this study are below. Please note this is a list for the study as a whole, participants will receive drugs according to disease cohort. * Venetoclax * Azacitidine * Cytarabine * Methotrexate * Hydrocortisone * Leucovorin * Dexamethasone * Vincristine * Doxorubicin * Dexrazoxane * Calaspargase pegol * Hydrocortisone
This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.
This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.