Treatment Trials

131 Clinical Trials for Various Conditions

Focus your search

SUSPENDED
Testing the Addition of an Investigational Anti-Cancer Drug, ASTX660 (Tolinapant), to a Usual Chemotherapy Treatment (Eribulin) for Treatment of Advanced Triple Negative Breast Cancer
Description

This phase I/Ib trial tests the safety, side effects, best dose, and effectiveness of ASTX660 (tolinapant) in combination with eribulin mesylate (eribulin) in treating patients with triple negative breast cancer that cannot be removed by surgery (unresectable) or that has spread to nearby tissues or lymph nodes (locally advanced) or to other places in the body (metastatic). Tolinapant may stop the growth of tumor cells by blocking proteins, such as XIAP and cIAP1, needed for tumor cell survival. Chemotherapy drugs, such as eribulin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tolinapant in combination with eribulin may be safe, tolerable, and/or effective in treating patients with unresectable, locally advanced, or metastatic triple negative breast cancer.

NOT_YET_RECRUITING
Tamoxifen and Pegylated Liposomal Doxorubicin for the Treatment of Patients With Metastatic or Inoperable, Locally Advanced Triple Negative Breast Cancer
Description

This phase II trial tests how well tamoxifen and pegylated liposomal doxorubicin works in treating patients with triple negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic) or that has spread to nearby tissue or lymph nodes (locally advanced) and is unable to be operated on (inoperable). Tamoxifen works by blocking the effects of estrogen in the breast. This may help stop the growth of tumor cells that need estrogen to grow. Doxorubicin is in a class of medications called anthracyclines. Doxorubicin damages the cell's DNA and may kill cancer cells. It also blocks a certain enzyme needed for cell division and DNA repair. Liposomal doxorubicin is a form of the anticancer drug doxorubicin that is contained inside very tiny, fat-like particles. Liposomal doxorubicin may have fewer side effects and work better than other forms of the drug. Giving tamoxifen and pegylated liposomal doxorubicin together may work better in treating patients with metastatic or inoperable, locally advanced triple negative breast cancer than giving either of these drugs alone.

RECRUITING
Functional Imaging in Prediction of Response to Abemaciclib for Advanced Hormone Receptor-Positive, HER2-Negative Breast Cancer
Description

This phase II trial tests the accuracy of functional imaging (FFNP)-positron emission tomography (PET)/computed tomography (CT) to predict response to abemaciclib plus endocrine therapy. Abemaciclib is a drug used to treat certain types of hormone receptor positive (HR+), HER2 negative breast cancer. Abemaciclib blocks certain proteins, which may help keep tumor cells from growing. Endocrine therapy adds, blocks, or removes hormones that can cause cancer to grow. FFNP PET imaging is a form of x-ray that uses FFNP as an imaging agent that may provide more precise information about the location of tumors that "light up" with FFNP than a PET scan alone can provide.

RECRUITING
Propranolol and Pembrolizumab for Tumor Re-sensitization and Treatment of Patients With Checkpoint Inhibitor Refractory Metastatic or Unresectable Triple Negative Breast Cancer
Description

This phase II trial tests how well propranolol and pembrolizumab work to cause tumor re-sensitization and therefore treatment in patients with triple negative breast cancer that has not responded to previous checkpoint inhibitor therapy (refractory), cannot be removed by surgery (unresectable) or has spread from where it first started (primary site) to other places in the body (metastatic). Propranolol is a drug that is classified as a beta-blocker. Beta-blockers affect the heart and circulation. Beta-blockers, like propranolol, may help to counteract effects of certain stress hormones produced by the body during cancer treatment and may increase the effectiveness of the pembrolizumab. Pembrolizumab is a drug that is classified as an immune checkpoint inhibitor. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Propranolol may be able to re-sensitize the cells of the immune system to respond to the checkpoint inhibitor pembrolizumab in patients with checkpoint inhibitor refractory metastatic or unresectable triple negative breast cancer.

RECRUITING
Testing the Addition of an Anti-cancer Drug, ASTX727 (Cedazuridine, Decitabine), to Chemotherapy (Paclitaxel) and Immunotherapy (Pembrolizumab) for Metastatic Triple-Negative Breast Cancer
Description

This phase I trial tests the safety, side effects, and best dose of ASTX727 when given in combination with a usual approach of treatment with paclitaxel and pembrolizumab in patients with triple-negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic). The usual approach is defined as care most people get for this type of cancer. The usual approach for patients with metastatic triple negative breast cancer who are not in a study is chemotherapy with drugs like paclitaxel, carboplatin, cisplatin, eribulin, vinorelbine, capecitabine, gemcitabine, doxorubicin or cyclophosphamide. There is a protein called PD-L1 that helps regulate the body's immune system. For patients who have PD-L1+ tumors, immunotherapy (pembrolizumab) is usually added to paclitaxel or carboplatin/gemcitabine as initial treatment. For patients who have PD-L1-negative tumors, chemotherapy alone is used, without immunotherapy. ASTX727 is a combination of two drugs, decitabine and cedazuridine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops tumor cells from growing and dividing and may kill them. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ASTX727 with usual treatment approach with paclitaxel and pembrolizumab may be able to shrink or stabilize the tumor for longer than the usual approach alone in patients with metastatic triple negative breast cancer.

ENROLLING_BY_INVITATION
Safety, Ultrasound Conspicuity, and Migration of Twinkling Markers in Patients with Locally Advanced Breast Cancer
Description

This phase I study assesses the safety, ultrasound visibility (conspicuity), and movement from normal position (migration) of the twinkling marker in patients with breast cancer that has spread to the axillary lymph nodes (locally advanced) who will be undergoing neoadjuvant systemic therapy and surgery. Biopsy markers are used to identify the sites of cancer involvement in both the breasts and lymph nodes. These biopsy markers are needed to help guide breast cancer surgery. Twinkling markers are designed to have the same size and shape of conventional biopsy markers, but are made of a radio-opaque material that assists with localization of the marker. The twinkling marker may make it more easily seen with ultrasound at the time of breast cancer surgery as compared to conventional biopsy markers.

WITHDRAWN
Dendritic Cell-Based Treatment Plus Immunotherapy for the Treatment of Metastatic or Unresectable Triple Negative Breast Cancer
Description

This phase II trial tests the safety, side effects, and whether dendritic cell-based treatment and pembrolizumab work in treating patients with triple negative breast cancer that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). The term triple-negative breast cancer refers to the fact that the cancer cells don't have estrogen or progesterone receptors (ER or PR) and also don't make any or too much of the protein called HER2 (the cells test "negative" on all 3 tests). Dendritic cell-based treatment works by boosting the immune system (a system in our bodies that protects us against infection) to recognize and destroy the cancer cells. Pembrolizumab, is an immune checkpoint inhibitor drug, that works by targeting molecules that act as a check and balance system for immune responses. Immune checkpoint inhibitor drugs are designed to either "unleash" or "enhance" the cancer immune responses that already exist by either blocking inhibitory molecules or by activating stimulatory molecules. Giving dendritic cell-based therapy and pembrolizumab may decrease symptoms and improve quality of life in patients with triple negative breast cancer.

RECRUITING
Testing the Addition of Anti-Cancer Drug, ZEN003694 (ZEN-3694) and PD-1 Inhibitor (Pembrolizumab), to Standard Chemotherapy (Nab-Paclitaxel) Treatment in Patients With Advanced Triple-Negative Breast Cancer
Description

This phase Ib trial tests the safety and tolerability of ZEN003694 in combination with an immunotherapy drug called pembrolizumab and the usual chemotherapy approach with nab-paclitaxel for the treatment of patients with triple negative-negative breast cancer that has spread to other parts of the body (advanced). Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Nab-paclitaxel is an albumin-stabilized nanoparticle formulation of paclitaxel which may have fewer side effects and work better than other forms of paclitaxel. Immunotherapy with monoclonal antibodies, such as pembrolizumab may help the body's immune system attach the cancer and may interfere with the ability of tumor cells to grow and spread. ZEN003694 is an inhibitor of a family of proteins called the bromodomain and extra-terminal (BET). It may prevent the growth of tumor cells that over produce BET protein. Combination therapy with ZEN003694 pembrolizumab immunotherapy and nab-paclitaxel chemotherapy may help shrink or stabilize cancer for longer than chemotherapy alone.

RECRUITING
Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab for Treatment of Advanced Solid Tumors
Description

This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.

Conditions
Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Clinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage III Gastric Cancer AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage III Merkel Cell Carcinoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Clinical Stage IV Gastric Cancer AJCC v8Clinical Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IV Merkel Cell Carcinoma AJCC v8Clinical Stage IVA Gastric Cancer AJCC v8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVB Gastric Cancer AJCC v8Clinical Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Locally Advanced Cervical CarcinomaLocally Advanced Endometrial CarcinomaLocally Advanced Gastric AdenocarcinomaLocally Advanced Gastroesophageal Junction AdenocarcinomaLocally Advanced Head and Neck Squamous Cell CarcinomaLocally Advanced Hepatocellular CarcinomaLocally Advanced Lung Non-Small Cell CarcinomaLocally Advanced Malignant Solid NeoplasmLocally Advanced MelanomaLocally Advanced Merkel Cell CarcinomaLocally Advanced Renal Cell CarcinomaLocally Advanced Skin Squamous Cell CarcinomaLocally Advanced Triple-Negative Breast CarcinomaLocally Advanced Unresectable Breast CarcinomaLocally Advanced Unresectable Cervical CarcinomaLocally Advanced Unresectable Gastric AdenocarcinomaLocally Advanced Unresectable Gastroesophageal Junction AdenocarcinomaLocally Advanced Unresectable Renal Cell CarcinomaLocally Advanced Urothelial CarcinomaMetastatic Cervical CarcinomaMetastatic Endometrial CarcinomaMetastatic Gastric AdenocarcinomaMetastatic Gastroesophageal Junction AdenocarcinomaMetastatic Head and Neck Squamous Cell CarcinomaMetastatic Hepatocellular CarcinomaMetastatic Lung Non-Small Cell CarcinomaMetastatic Malignant Solid NeoplasmMetastatic MelanomaMetastatic Merkel Cell CarcinomaMetastatic Renal Cell CarcinomaMetastatic Skin Squamous Cell CarcinomaMetastatic Triple-Negative Breast CarcinomaMetastatic Urothelial CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage III Gastric Cancer AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Merkel Cell Carcinoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Gastric Cancer AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Gastric Cancer AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Gastric Cancer AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Pathologic Stage IV Gastric Cancer AJCC v8Pathologic Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IV Merkel Cell Carcinoma AJCC v8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IV Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Skin Squamous Cell CarcinomaStage III Cervical Cancer AJCC v8Stage III Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage III Hepatocellular Carcinoma AJCC v8Stage III Lung Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Uterine Corpus Cancer AJCC v8Stage IIIA Cervical Cancer AJCC v8Stage IIIA Hepatocellular Carcinoma AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIA Uterine Corpus Cancer AJCC v8Stage IIIB Cervical Cancer AJCC v8Stage IIIB Hepatocellular Carcinoma AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIB Uterine Corpus Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IIIC Uterine Corpus Cancer AJCC v8Stage IIIC1 Uterine Corpus Cancer AJCC v8Stage IIIC2 Uterine Corpus Cancer AJCC v8Stage IV Cervical Cancer AJCC v8Stage IV Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Lung Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Uterine Corpus Cancer AJCC v8Stage IVA Cervical Cancer AJCC v8Stage IVA Hepatocellular Carcinoma AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVA Uterine Corpus Cancer AJCC v8Stage IVB Cervical Cancer AJCC v8Stage IVB Hepatocellular Carcinoma AJCC v8Stage IVB Lung Cancer AJCC v8Stage IVB Uterine Corpus Cancer AJCC v8Triple-Negative Breast CarcinomaUnresectable Cervical CarcinomaUnresectable Endometrial CarcinomaUnresectable Gastric AdenocarcinomaUnresectable Gastroesophageal Junction AdenocarcinomaUnresectable Head and Neck Squamous Cell CarcinomaUnresectable Hepatocellular CarcinomaUnresectable Lung Non-Small Cell CarcinomaUnresectable Malignant Solid NeoplasmUnresectable MelanomaUnresectable Merkel Cell CarcinomaUnresectable Renal Cell CarcinomaUnresectable Skin Squamous Cell CarcinomaUnresectable Triple-Negative Breast CarcinomaUnresectable Urothelial Carcinoma
WITHDRAWN
Panitumumab and Pembrolizumab in Combination With Neoadjuvant Chemotherapy for the Treatment of Stage III-IV Triple Negative Breast Cancer
Description

This phase II trial tests whether panitumumab and pembrolizumab in combination with standard of care chemotherapy before surgery (neoadjuvant) works to shrink tumors in patients with stage III-IV triple negative breast cancer. Panitumumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as paclitaxel, carboplatin, doxorubicin, and cyclophosphamide work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving panitumumab and pembrolizumab in combination with neoadjuvant chemotherapy may kill more tumor cells in patients with triple negative breast cancer.

RECRUITING
Prediction of Neoadjuvant Chemotherapy Response Using Contrast-Enhanced Ultrasound in Patients With Locally Advanced Breast Cancer
Description

This phase II/III trial studies if contrast-enhanced ultrasounds using a contrast dye, perflutren lipid microspheres (Definity), can predict the response to chemotherapy by estimating the pressure in the cancer in patients with breast cancer that has spread to nearby tissues and lymph nodes (locally advanced). The efficacy of cancer therapy is affected by the pressure in the cancer. Definity is a contrast dye used to create better images during ultrasounds. The purpose of this trial is to determine if a special kind of ultrasound, called contrast-enhanced ultrasound, an experimental imaging test, can detect pressures in cancer to determine the response to neoadjuvant chemotherapy in patients with breast cancer.

ACTIVE_NOT_RECRUITING
Niraparib and TSR-042 for the Treatment of BRCA-Mutated Unresectable or Metastatic Breast, Pancreas, Ovary, Fallopian Tube, or Primary Peritoneal Cancer
Description

This phase IB trial evaluates the effect of niraparib and TSR-042 in treating patients with BRCA-mutated breast, pancreas, ovary, fallopian tube, or primary peritoneal cancer that cannot be removed by surgery (unresectable) or has spread to other places in the body (metastatic). Niraparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as TSR-042, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving niraparib and TSR-042 may kill more cancer cells.

RECRUITING
Measuring the Effects of Talazoparib in Patients With Advanced Cancer and DNA Repair Variations
Description

This phase II trial studies if talazoparib works in patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and has mutation(s) in deoxyribonucleic acid (DNA) damage response genes who have or have not already been treated with another PARP inhibitor. Talazoparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. All patients who take part on this study must have a gene aberration that changes how their tumors are able to repair DNA. This trial may help scientists learn whether some patients might benefit from taking different PARP inhibitors "one after the other" and learn how talazoparib works in treating patients with advanced cancer who have aberration in DNA repair genes.

ACTIVE_NOT_RECRUITING
Testing the Addition of Copanlisib to Eribulin in Metastatic Triple Negative Breast Cancer
Description

This phase I/II trial studies the side effects and best dose of copanlisib and how well it works when given together with eribulin in treating patients with triple negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic). Copanlisib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as eribulin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving copanlisib and eribulin together may work better in treating advanced stage triple negative breast cancer compared to eribulin alone.

COMPLETED
Pharmacogenomics Testing in the Optimal Use of Supportive Care Medications in Stage III-IV Cancer
Description

This early phase I trial studies how well a genetic test called pharmacogenomics works in directing the optimal use of supportive care medications in patients with stage III-IV cancer. Pharmacogenomics is the study of how genes may affect the body's response to and interaction with some prescription medications. Genes, which are inherited from parents, carry information that determines things such as eye color and blood type. Genes can also influence how patients process and respond to medications. Depending on the genetic makeup, some medications may work faster or slower or produce more or fewer side effects. Pharmacogenomics testing may help doctors learn more about how patients break down and process specific medications based on their genes and improve the quality of life of cancer patients receiving clinical care.

Conditions
Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Biliary Tract CarcinomaClinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Malignant Brain NeoplasmMalignant Genitourinary System NeoplasmMalignant Solid NeoplasmPancreatobiliary CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Stage III Colorectal Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage III Prostate Cancer AJCC v8Stage IIIA Colorectal Cancer AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA Prostate Cancer AJCC v8Stage IIIB Colorectal Cancer AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIB Prostate Cancer AJCC v8Stage IIIC Colorectal Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8Stage IIIC Prostate Cancer AJCC v8Stage IV Colorectal Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Stage IVA Colorectal Cancer AJCC v8Stage IVA Ovarian Cancer AJCC v8Stage IVA Pancreatic CancerStage IVA Prostate Cancer AJCC v8Stage IVB Colorectal Cancer AJCC v8Stage IVB Ovarian Cancer AJCC v8Stage IVB Pancreatic CancerStage IVB Prostate Cancer AJCC v8Stage IVC Colorectal Cancer AJCC v8
RECRUITING
Lymphovenous Bypass Procedure Before Underarm Lymph Node Surgery in Preventing Lymphedema in Patients With Inflammatory or Locally Advanced Non-inflammatory Breast Cancer or Melanoma
Description

This pilot trial studies whether a procedure called lymphovenous bypass would prevent lymphedema (arm swelling) in patients with inflammatory breast cancer or non-inflammatory breast cancer that has spread to nearby tissues or lymph nodes or melanoma. The lymphovenous bypass procedure creates a path for lymphatic fluid to flow away from the arms. It is usually done after a diagnosis of lymphedema. In this study, giving lymphovenous bypass before underarm lymph node surgery may help prevent lymphedema from forming.

COMPLETED
T-VEC With Chemotherapy or Endocrine Therapy in Treating Participants With HER2- Negative Breast Cancer
Description

This phase Ib trials studies the side effects and how well talimogene laherparepvec works when given together with chemotherapy or endocrine therapy in treating patients with breast cancer that does not express the human epidermal growth factor receptor 2 (HER2) protein and has spread to other places in the body (metastatic), cannot be removed by surgery (unresectable), or has come back (recurrent). Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may attack specific tumor cells and stop them from growing or kill them. Chemotherapy drugs, such as nab-paclitaxel, gemcitabine, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Estrogen can cause the growth of breast cancer cells. Drugs used as endocrine therapy, such as letrozole, anastrozole, exemestane, tamoxifen or fulvestrant, may lessen the amount of estrogen made by the body or may may stop the growth of tumor cells by blocking estrogen from connecting to the cancer cells. Giving talimogene laherparepvec with chemotherapy or endocrine therapy may work better in treating patients with HER2-negative breast cancer.

ACTIVE_NOT_RECRUITING
Testing Olaparib Either Alone or in Combination With Atezolizumab in BRCA Mutant Non-HER2-positive Breast Cancer
Description

This randomized phase II trial studies how well olaparib with or without atezolizumab work in treating patients with non-HER2-positive breast cancer that has spread to nearby tissue or lymph nodes (locally advanced), that cannot be removed by surgery (unresectable), or that has spread from where it first started (primary site) to other places in the body (metastatic). Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. It is not known whether giving olaparib with or without atezolizumab will work better in patients with non-HER2-positive breast cancer.

ACTIVE_NOT_RECRUITING
Entinostat, Nivolumab, and Ipilimumab in Treating Patients With Solid Tumors That Are Metastatic or Cannot Be Removed by Surgery or Locally Advanced or Metastatic HER2-Negative Breast Cancer
Description

This phase I trial studies the side effects and best dose of entinostat and nivolumab when given together with ipilimumab in treating patients with solid tumors that have spread to other places in the body and usually cannot be cured or controlled with treatment (metastatic) or that cannot be removed by surgery (unresectable) or human epidermal growth factor receptor 2 (HER2)-negative breast cancer that has spread from where it started to nearby tissue or lymph nodes or other parts of the body. Entinostat is in a class of drugs called histone deacetylase (HDAC) inhibitors. It may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth (locally advanced/metastatic). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving entinostat and nivolumab together with ipilimumab may work better in treating in patients with solid tumors.

ACTIVE_NOT_RECRUITING
Exemestane With or Without Entinostat in Treating Patients With Recurrent Hormone Receptor-Positive Breast Cancer That is Locally Advanced or Metastatic
Description

This randomized phase III trial studies exemestane and entinostat to see how well they work compared to exemestane alone in treating patients with hormone receptor-positive breast cancer that has spread to nearby tissue or lymph nodes (locally advanced) or another place in the body (metastatic). Estrogen can cause the growth of breast cancer cells. Endocrine therapy using exemestane may fight breast cancer by lowering the amount of estrogen the body makes. Entinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether exemestane is more effective with or without entinostat in treating breast cancer.

COMPLETED
Veliparib With or Without Carboplatin in Treating Patients With Stage III or IV Breast Cancer
Description

This phase II trial studies how well veliparib with or without carboplatin works in treating patients with stage III or IV breast cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether veliparib is more effective with or without carboplatin in treating breast cancer.

NOT_YET_RECRUITING
An Optimized Ultrasound Twinkling Marker for the Imaging of Lymph Nodes in Patients With Clinically Node-Positive Breast Cancer, The UTMOST2 Trial
Description

This phase II trial studies the performance, including ultrasound visibility, of an optimized ultrasound twinkling marker in imaging lymph nodes in patients with clinically node-positive breast cancer. In patients with biopsy-proven breast cancer, biopsy markers are used to identify the sites of cancer involvement in both the breasts and lymph nodes. These biopsy markers are critical for guiding surgical management many months after the marker is placed. For breast radiologists and breast surgeons, there is a need for simple, consistent visibility of biopsy markers by ultrasound, particularly several months after marker placement. Ultrasound is the imaging method of choice, particularly for lymph nodes in the armpit (axilla). Ultrasound is non-ionizing and is more comfortable for patients compared to mammography. However, ultrasound visibility of these markers is challenging and inconsistent, with ultrasound failing to detect the marker approximately 25% of the time. The Mayo-designed investigational biopsy marker takes advantage of an ultrasound phenomenon called twinkling artifact. The Mayo-designed optimized ultrasound twinkling marker may work better than standard biopsy clip marker in imaging lymph nodes in patients with clinically node-positive breast cancer.

NOT_YET_RECRUITING
Ultra-hypofractionated Whole Breast Irradiation With Lumpectomy Cavity Boost for the Treatment of Stage I-III Breast Cancer
Description

This clinical trial tests how well ultra-hypofractionated (UF) whole breast irradiation (WBI) with lumpectomy cavity boost (CB) works in treating patients with stage I-III breast cancer. Breast conservation therapy (BCT) is the recommended treatment for patients with early stage breast cancer. BCT involves a lumpectomy followed by breast radiation. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill tumor cells and shrink tumors. Traditionally, WBI has been given once daily over 5-6 weeks and then those at high-risk for recurrence receive additional radiation (boost) to the lumpectomy cavity daily over 4-8 days. This has now been replaced by moderate hypofractionated radiation. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Although moderate hypofractionated radiation therapy reduces the length of treatment from 6-7 weeks to 3-4 weeks, the length of treatment still remains a barrier for many patients. UF-WBI with CB delivers radiation to the whole breast and the surgical cavity at the same time over 5 daily treatments. Giving UF-WBI with CB may prevent recurrence and prolong survival as well as improve the quality of life in patients with stage I-III breast cancer.

RECRUITING
A Digital Health Intervention to Improve Symptoms and Physical Activity During Breast Radiation
Description

This clinical trial evaluates a digital health intervention for improving symptoms and physical activity among patients with breast cancer undergoing radiation. Cancer-related fatigue is common and strongly associated with quality of life during and after treatment. Increasing emphasis on early symptom detection and management has prompted initiatives to collect patient-reported fatigue from all patients during treatment. Mind-body interventions including physical activity and yoga are recommendations to treat fatigue and comorbid (coexisting) symptoms. Lower socioeconomic status has not only been associated with higher rates of physical inactivity but also with perceptions that it could negatively impact fatigue and quality of life during treatment. A virtual mind-body program called Integrative Medicine at Home (IM@Home) includes cardio fitness and yoga classes in a bundled intervention that has demonstrated decreased fatigue, depression, insomnia, and symptom distress among patients undergoing breast radiation. The IM@Home program may also increase physical activity among patients with breast cancer undergoing radiation.

RECRUITING
Metformin for the Treatment of Insulin Resistance in Women With Stage I-III Breast Cancer Completing Chemotherapy
Description

This phase III trial evaluates how often women develop insulin resistance and type-2 diabetes and compares metformin with usual care to usual care alone in treating insulin resistance in women with stage I-III breast cancer after chemotherapy. Insulin resistance occurs when cells stop responding to insulin and is a risk factor for developing diabetes and heart disease. Higher levels of insulin have been shown to be associated with aggressive breast cancer. Metformin hydrochloride decreases the amount of glucose (a type of sugar) released into the bloodstream from the liver and increases the body's use of the glucose. Metformin as well as standard of care diet and exercise education is known to lower blood sugar. However, chemotherapy may accelerate metabolic disorders, such as high blood sugar, and the impact of metformin in these breast cancer survivors is not known. Giving metformin with usual care may be more effective than usual care alone in preventing or reversing insulin resistance in women with stage I-III breast cancer after chemotherapy.

RECRUITING
Mindfulness Intervention for Improving Nutrition in the Digital Kitchen Among Stage I-III Breast Cancer Survivors, MIND Trial
Description

This trial tests how well a remotely-delivered nutrition and culinary intervention works to improve diet quality among stage I-III breast cancer survivors. Despite the strong evidence demonstrating the benefits of healthy nutrition on improving cancer outcomes, most breast cancer survivors, do not meet the nutrition recommendations The use of technology in behavioral interventions is proving to be a cost-effective mode of delivering lifestyle education to promote behavior change. The Mindfulness Intervention for Nutrition in the Digital Kitchen (MIND) program is delivered through a learning management system on the Cook for Your Life platform (cookforyourlife.org). The Cook for Your Life platform is a cancer patient-facing interactive program offering free nutrition and healthy cooking information, recipes, and cooking videos that disseminate evidence-based information on nutrition and cancer survivorship. The MIND program may help improve diet quality and increase fruit and vegetable intake among stage I-III breast cancer survivors.

RECRUITING
Hypofractionated Radiotherapy Before or After Breast Surgery for Treatment of Patients With Non-Metastatic Breast Cancer
Description

This phase II trial studies how well hypofractionated radiotherapy before (preoperative) or after (postoperative) breast surgery works in treating patients with different types of non-metastatic (has not spread from original tumor site) breast cancer and to determine the outcomes and side effects of this treatment. Radiation therapy is considered an integral part of breast conserving therapy. Hypofractionated radiation therapy is a radiation treatment in which the total dose of radiation is divided into large doses and treatments are given less than once a day. This has been shown to be an effective treatment for breast cancer while reducing treatment time and decreasing side effects. Preoperative radiotherapy alone or concurrently with chemotherapy has also been tested with excellent results and with minimal toxicity. Preoperative radiation of the intact tumor with a hypofractionated regimen can potentially decrease toxicity by allowing the delivery of treatment to intact breast tissue. The potential advantages of preoperative radiation therapy include the delivery of radiation in the intact breast when radiation can be more effective as more oxygen can be available in the tissue. Furthermore, complications and cosmetic results are expected to be lower in pre-operative radiotherapy before surgery, as there have been no changes in blood supply to the breast. This lends to the possibility of using lower doses of radiotherapy to patients, and potentially better cancer associated clinical outcomes for our breast cancer patients. Undergoing hypofractionated radiation therapy before or after breast surgery may be safe and effective in treating patients with different types of non-metastatic breast cancer.

RECRUITING
Integrative Approaches for Cancer Survivorship (IACS3)
Description

This clinical trial is a two-arm pilot randomized controlled trial for non-metastatic breast cancer survivors to determine the feasibility, acceptability, and fidelity of two integrative health approaches and study design in a multi-site setting. Participants (n=104) will be randomized to either the Ayurveda Intervention (AVI) or Facing Forward Health Education Intervention (FFHEI). Integrative health combines biomedical and complementary approaches together in a coordinated way. AVI, a multi-modal intervention, includes nutritional education, lifestyle practices, yoga, and therapeutic touch, called marma, to help the body and mind feel balanced. FFHEI provides health education using self-directed online content and interactive videos based on the latest science in cancer survivorship. This study does not intend to conduct tests of efficacy and is focused on feasibility outcomes.

NOT_YET_RECRUITING
A Precision Medicine Approach (SMMART-ACT) for the Treatment of Patients With Advanced, Recurrent Sarcoma, Prostate, Breast, Ovarian or Pancreatic Cancer
Description

This phase II trial tests the how well a precision medicine approach (serial measurements of molecular and architectural response to therapy \[SMMART\])-adaptive clinical treatment \[ACT\]) works in treating patients with sarcoma, prostate, breast, ovarian or pancreatic cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). SMMART testing uses genetic and protein tests to learn how cancer changes and to understand what drugs may work against a person's cancer or why drugs stop working. These test results are reviewed by a group of physicians and scientists during a SMMART tumor board who then recommend precision therapy.

RECRUITING
Fezolinetant for the Improvement of Vasomotor Symptoms in Breast Cancer Patients Taking Endocrine Therapy, VENT Trial
Description

This phase II trial tests how well fezolinetant works in improving vasomotor symptoms (VMS) in breast cancer patients taking endocrine therapy (ET). Anti-hormone treatments are effective for lowering the risk of breast cancer but can cause bothersome VMS, such as hot flashes and night sweats. Fezolinetant inhibits the activity of the neurokinin type 3 receptor and has shown activity against VMS in postmenopausal women. Taking fezolinetant may work well at improving VMS in breast cancer patients taking ET.