Treatment Trials

16 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Brentuximab Vedotin and Nivolumab in Treating Patients With Early Stage Classic Hodgkin Lymphoma
Description

This phase II trial studies how well brentuximab vedotin and nivolumab work in treating patients with stage I-II classic Hodgkin lymphoma. Brentuximab vedotin is a monoclonal antibody, brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to CD30 positive cancer cells in a targeted way and delivers vedotin to kill them. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

ACTIVE_NOT_RECRUITING
Doxorubicin, Vinblastine, Dacarbazine, Brentuximab Vedotin, and Nivolumab in Treating Patients With Stage I-II Hodgkin Lymphoma
Description

This phase II trial evaluates how well AVD (doxorubicin, vinblastine, dacarbazine) in combination with brentuximab vedotin and nivolumab work in treating patients with stage I-II Hodgkin lymphoma. Drugs used in the chemotherapy, such as doxorubicin, vinblastine, dacarbazine, and brentuximab vedotin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, and/or by stopping them from spreading. Targeted agent, such as nivolumab, may interfere with the ability of cancer cells to grow and spread by enhancing the immune system. Giving doxorubicin, vinblastine, dacarbazine, brentuximab vedotin, and nivolumab may improve survival of patients with stage I-II Hodgkin lymphoma.

ACTIVE_NOT_RECRUITING
Nivolumab and Brentuximab Vedotin in Treating Older Patients With Untreated Hodgkin Lymphoma
Description

This phase II trial studies how well nivolumab and brentuximab vedotin work in treating older patients with untreated Hodgkin lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Biological therapies, such as brentuximab vedotin, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Nivolumab and brentuximab vedotin may work better in treating older patients with untreated Hodgkin lymphoma.

ACTIVE_NOT_RECRUITING
Brentuximab Vedotin and Combination Chemotherapy in Treating Patients With Stage II-IV HIV-Associated Hodgkin Lymphoma
Description

This pilot phase I/II trial studies the side effects and the best dose of brentuximab vedotin when given together with combination chemotherapy and to see how well they work in treating patients with stage II-IV human immunodeficiency virus (HIV)-associated Hodgkin lymphoma. Brentuximab vedotin is a monoclonal antibody, called brentuximab, linked to a chemotherapy drug called vedotin. Brentuximab attaches to CD30-positive cancer cells in a targeted way and delivers vedotin to kill them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, vinblastine sulfate, and dacarbazine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin together with combination chemotherapy may kill more cancer cells.

ACTIVE_NOT_RECRUITING
Vorinostat, Rituximab, and Combination Chemotherapy in Treating Patients With Newly Diagnosed Stage II, Stage III, or Stage IV Diffuse Large B-Cell Lymphoma
Description

This phase I/II trial is studying the side effects and best dose of vorinostat when given together with rituximab and combination chemotherapy and to see how well it works in treating patients with newly diagnosed stage II, stage III, or stage IV diffuse large B-cell lymphoma. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Monoclonal antibodies, such as rituximab, can block cancer cell growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cell-killing substances to them. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with rituximab and combination chemotherapy may kill more cancer cells.

COMPLETED
Collecting and Storing Biological Samples From Young Patients With Hodgkin?s Lymphoma
Description

This laboratory study is collecting and storing samples of tissue and blood from young patients with Hodgkin's lymphoma. Collecting and storing samples of tumor tissue and blood from patients with cancer to study in the laboratory may help the study of cancer in the future.

ACTIVE_NOT_RECRUITING
Treating Young Patients With Newly Diagnosed, Low Stage, Lymphocyte Predominant Hodgkin Disease
Description

This clinical trial is studying how well surgery and/or combination chemotherapy with or without radiation therapy or observation only work in treating young patients with newly diagnosed stage I or stage II lymphocyte predominant Hodgkin disease (LPHD). Surgery may be an effective treatment for LPHD. Drugs used in chemotherapy, such as doxorubicin, vincristine, prednisone, and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill cancer cells. Giving more than one drug (combination chemotherapy) with or without radiation therapy may kill more cancer cells.

ACTIVE_NOT_RECRUITING
Nivolumab With DA-REPOCH Chemotherapy Regimen in Treating Patients With Aggressive B-Cell Non-Hodgkin's Lymphoma
Description

This phase II trial studies how well nivolumab works with the DA-REPOCH chemotherapy regimen in treating patients with aggressive B-cell non-Hodgkin lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body?s immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as dose-adjusted rituximab, etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride (DA-REPOCH), work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab with DA-REPOCH may work better in treating patients with aggressive B-cell non-Hodgkin lymphoma.

ACTIVE_NOT_RECRUITING
Ultra Low Dose Orbital Radiation Therapy in Treating Patients With Stage I-IV Indolent B-cell Lymphoma or Mantle Cell Lymphoma
Description

This phase II trial studies how well ultra low dose orbital radiation therapy works in treating patients with stage I-IV low grade (indolent) B-cell lymphoma or mantle cell lymphoma involving the orbit of the eye (space enclosed by the borders of the eye socket). Orbital radiation therapy uses external beam radiation to destroy cancer cells. Using ultra low dose orbital radiation therapy may be effective in treating indolent B-cell lymphoma or mantle cell lymphoma involving the eye and may have fewer side effects.

ACTIVE_NOT_RECRUITING
Obinutuzumab and Ibrutinib as Front Line Therapy in Treating Patients With Indolent Non-Hodgkin's Lymphomas
Description

This phase II trial studies how well obinutuzumab and ibrutinib work as front line therapy in treating patients with indolent non-Hodgkin's lymphoma. Monoclonal antibodies, such as obinutuzumab, may interfere with the ability of cancer cells to grow and spread. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving obinutuzumab and ibrutinib may work better in treating patients with non-Hodgkin's lymphomas.

COMPLETED
Vorinostat and Combination Chemotherapy With Rituximab in Treating Patients With HIV-Related Diffuse Large B-Cell Non-Hodgkin Lymphoma or Other Aggressive B-Cell Lymphomas
Description

This partially randomized phase I/II trial studies the side effects and the best dose of vorinostat when given together with combination chemotherapy and rituximab to see how well it works compared to combination chemotherapy alone in treating patients with human immunodeficiency virus-related diffuse large B-cell non-Hodgkin lymphoma or other aggressive B-cell lymphomas. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving vorinostat together with combination chemotherapy and rituximab may kill more cancer cells.

COMPLETED
Lenalidomide and Rituximab in Treating Patients With Previously Untreated Stage II, Stage III, or Stage IV Follicular Non-Hodgkin Lymphoma
Description

This phase II trial studies how well lenalidomide and rituximab work in treating patients with previously untreated stage II, stage III, or stage IV follicular non-Hodgkin lymphoma. Biological therapies, such as lenalidomide, may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving lenalidomide together with rituximab may kill more cancer cells.

ACTIVE_NOT_RECRUITING
Parsaclisib Plus the Standard Drug Therapy in Patients with Newly Diagnosed, High Risk Diffuse Large B-cell Lymphoma
Description

This phase I/Ib trial studies the side effects and best dose of parsaclisib with or without polatuzumab-vedotin (Pola) plus the standard drug therapy (rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone \[PaR-CHOP\]) and to see how well they work compared with R-CHOP alone in treating patients with newly diagnosed, high risk diffuse large B-cell lymphoma. Parsaclisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Polatuzumab-vedotin is a monoclonal antibody, called polatuzumab, linked to a chemotherapy drug, called vedotin. Polatuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as anti-CD79b receptors, and delivers vedotin to kill them. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin hydrochloride, and vincristine sulfate, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Anti-inflammatory drugs, such as prednisone, lower the body's immune response and are used with other drugs in the treatment of some types of cancer. It is not yet known if giving parsaclisib and R-CHOP together works better than R-CHOP alone in treating patients with high risk diffuse large B-cell lymphoma.

ACTIVE_NOT_RECRUITING
Brentuximab Vedotin and Combination Chemotherapy in Treating Patients With CD30-Positive Peripheral T-cell Lymphoma
Description

This phase II trial studies the side effects and how well brentuximab vedotin and combination chemotherapy work in treating patients with CD30-positive peripheral T-cell lymphoma. Brentuximab vedotin is a monoclonal antibody, brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to CD30 positive cancer cells in a targeted way and delivers vedotin to kill them. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin, etoposide, and prednisone work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin and combination chemotherapy may work better in treating patients with CD30-positive peripheral T-cell lymphoma.

RECRUITING
A Study of BV-AVD in People With Bulky Hodgkin Lymphoma
Description

The purpose of this study is to test whether BV-AVD is an effective treatment in people with early stage, bulky Hodgkin lymphoma that was recently diagnosed and who have not yet received any treatments for their disease. BV is a type of drug called an antibody-drug conjugate (ADC). ADCs are a substance made up of a monoclonal antibody chemically linked to a drug. Antibodies are proteins made by the immune system to fight infections and other possible harms to the body. The monoclonal antibody binds to specific proteins or receptors found on certain types of cells, including cancer cells. The linked drug enters these cells and kills them without harming other cells. Researchers think BV may be an effective treatment for this type of cancer because the drug targets cells that have CD30, which play a role in cancer cell growth. By destroying these cells, BV may help slow or stop the growth of the cancer. AVD (doxorubicin, vinblastine, and dacarbazine) is a treatment regimen that works by stopping the growth of cancer cells, either by killing the cells or by stopping them from dividing. The researchers think that BV in combination with AVD may work better than AVD alone to slow or stop the growth of the cancer.

TERMINATED
Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART) PRIME Trial
Description

This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.

Conditions
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveAnatomic Stage IV Breast Cancer AJCC v8AnemiaAnn Arbor Stage III Hodgkin LymphomaAnn Arbor Stage III Non-Hodgkin LymphomaAnn Arbor Stage IV Hodgkin LymphomaAnn Arbor Stage IV Non-Hodgkin LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlast Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveCastration-Resistant Prostate CarcinomaChronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveHematopoietic and Lymphoid System NeoplasmLocally Advanced Pancreatic AdenocarcinomaMetastatic Breast CarcinomaMetastatic Malignant Solid NeoplasmMetastatic Pancreatic AdenocarcinomaMyelodysplastic/Myeloproliferative Neoplasm With Ring Sideroblasts and ThrombocytosisMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiablePrimary MyelofibrosisRecurrent Acute Lymphoblastic LeukemiaRecurrent Acute Myeloid LeukemiaRecurrent Chronic Lymphocytic LeukemiaRecurrent Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRecurrent Hematologic MalignancyRecurrent Hodgkin LymphomaRecurrent Myelodysplastic SyndromeRecurrent Myelodysplastic/Myeloproliferative NeoplasmRecurrent Myeloproliferative NeoplasmRecurrent Non-Hodgkin LymphomaRecurrent Plasma Cell MyelomaRecurrent Small Lymphocytic LymphomaRefractory Acute Lymphoblastic LeukemiaRefractory Acute Myeloid LeukemiaRefractory Chronic Lymphocytic LeukemiaRefractory Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRefractory Chronic Myelomonocytic LeukemiaRefractory Hematologic MalignancyRefractory Hodgkin LymphomaRefractory Malignant Solid NeoplasmRefractory Myelodysplastic SyndromeRefractory Myelodysplastic/Myeloproliferative NeoplasmRefractory Non-Hodgkin LymphomaRefractory Plasma Cell MyelomaRefractory Primary MyelofibrosisRefractory Small Lymphocytic LymphomaStage II Pancreatic Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Unresectable Pancreatic Adenocarcinoma