13 Clinical Trials for Various Conditions
This phase I/II trial finds out the best dose, possible benefits and/or side effects of ALX148 in combination with rituximab and lenalidomide in treating patients with indolent and aggressive B-cell non-Hodgkin lymphoma. Immunotherapy with ALX148, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody that binds to a protein called CD20 found on B-cells, and may kill cancer cells. Giving ALX148 in combination with rituximab and lenalidomide may help to control the disease.
This phase II trial studies how well acalabrutinib, lenalidomide, and rituximab work in treating patients with CD20 positive stage III-IV, grade 1-3a follicular lymphoma. Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving acalabrutinib, lenalidomide, and rituximab may help to control the disease.
This phase II trial studies how well obinutuzumab and lenalidomide work in treating patients with previously untreated stage II-IV grade 1-3a follicular lymphoma. Immunotherapy with obinutuzumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving obinutuzumab and lenalidomide may work better in treating patients with previously untreated follicular lymphoma.
This phase II trial studies how well ultra low dose orbital radiation therapy works in treating patients with stage I-IV low grade (indolent) B-cell lymphoma or mantle cell lymphoma involving the orbit of the eye (space enclosed by the borders of the eye socket). Orbital radiation therapy uses external beam radiation to destroy cancer cells. Using ultra low dose orbital radiation therapy may be effective in treating indolent B-cell lymphoma or mantle cell lymphoma involving the eye and may have fewer side effects.
This phase III trial studies rituximab and yttrium Y-90 ibritumomab tiuxetan to see how well they work compared to rituximab alone in treating patients with untreated follicular lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radioactive substances linked to monoclonal antibodies can bind to cancer cells and give off radiation which may help kill cancer cells. It is not yet known whether rituximab works better with or without yttrium Y-90 ibritumomab tiuxetan in treating follicular lymphoma.
This phase I trial studies the side effects and best dose of lenalidomide and ibrutinib when given together with rituximab in treating patients with previously untreated stage II-IV follicular lymphoma. Lenalidomide may stimulate the immune system in different ways and stop cancer cells from growing. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving lenalidomide and ibrutinib together with rituximab may work well in treating follicular lymphoma.
This randomized phase II trial studies how well ofatumumab and bendamustine hydrochloride with or without bortezomib works in treating patients with untreated follicular non-Hodgkin lymphoma. Monoclonal antibodies, such as ofatumumab, may block cancer growth in different ways by targeting certain cells. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bortezomib may also stop the growth of cancer cells by blocking blood flow to the tumor. It is not yet known whether ofatumumab and bendamustine hydrochloride are more effective with bortezomib in treating patients with follicular non-Hodgkin lymphoma.
This phase II trial studies how well lenalidomide and rituximab work in treating patients with previously untreated stage II, stage III, or stage IV follicular non-Hodgkin lymphoma. Biological therapies, such as lenalidomide, may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving lenalidomide together with rituximab may kill more cancer cells.
This phase II trial studies how well lenalidomide works in combination with rituximab in treating participants with stage III-IV non-Hodgkin lymphoma that is growing slowly. Lenalidomide is designed to change the body's immune system. It may also interfere with the development of tiny blood vessels that help support tumor growth, which may prevent the growth of cancer cells. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving lenalidomide and rituximab may work better in participants with indolent non-Hodgkin lymphoma.
This phase II trial tests the safety, side effects and effectiveness of mosunetuzumab in treating patients with slow growing (indolent) B-cell lymphoma. Mosunetuzumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread.
This phase II trial studies how well obinutuzumab, ibrutinib, and venetoclax work in treating patients with previously untreated stage II-IV follicular lymphoma. Immunotherapy with obinutuzumab may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Ibrutinib and venetoclax may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving obinutuzumab, ibrutinib, and venetoclax together may work better in treating follicular lymphoma compared to each drug alone.
This phase II trial studies how well obinutuzumab and ibrutinib work as front line therapy in treating patients with indolent non-Hodgkin's lymphoma. Monoclonal antibodies, such as obinutuzumab, may interfere with the ability of cancer cells to grow and spread. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving obinutuzumab and ibrutinib may work better in treating patients with non-Hodgkin's lymphomas.
This phase II trial studies how well ibrutinib in combination with rituximab and lenalidomide works in treating patients with previously untreated, stage II-IV follicular lymphoma or marginal zone lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, may block cancer growth in different ways by targeting certain cells. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Giving ibrutinib in combination with rituximab and lenalidomide may work better in treating follicular lymphoma or marginal zone lymphoma.