7 Clinical Trials for Various Conditions
This phase II trial studies how well nivolumab and brentuximab vedotin work in treating older patients with untreated Hodgkin lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Biological therapies, such as brentuximab vedotin, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Nivolumab and brentuximab vedotin may work better in treating older patients with untreated Hodgkin lymphoma.
This phase III trial studies brentuximab vedotin and combination chemotherapy to see how well they work compared to combination chemotherapy alone in treating children and young adults with stage IIB with bulk, stage IIIB, IVA, or IVB Hodgkin lymphoma. Combinations of biological substances in brentuximab vedotin may be able to carry cancer-killing substances directly to Hodgkin lymphoma cells. Chemotherapy drugs, such as doxorubicin hydrochloride, bleomycin sulfate, vincristine sulfate, etoposide, prednisone, and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known if combination chemotherapy is more effective with or without brentuximab vedotin in treating children with high-risk Hodgkin lymphoma.
This pilot phase I/II trial studies the side effects and the best dose of brentuximab vedotin when given together with combination chemotherapy and to see how well they work in treating patients with stage II-IV human immunodeficiency virus (HIV)-associated Hodgkin lymphoma. Brentuximab vedotin is a monoclonal antibody, called brentuximab, linked to a chemotherapy drug called vedotin. Brentuximab attaches to CD30-positive cancer cells in a targeted way and delivers vedotin to kill them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, vinblastine sulfate, and dacarbazine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin together with combination chemotherapy may kill more cancer cells.
This phase I trial studies the best dose and side effects of tazemetostat in treating patients with solid tumors or B-cell lymphomas with liver dysfunction that have spread to other places in the body or cannot be removed by surgery. Tazemetostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well nivolumab works with the DA-REPOCH chemotherapy regimen in treating patients with aggressive B-cell non-Hodgkin lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body?s immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as dose-adjusted rituximab, etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride (DA-REPOCH), work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab with DA-REPOCH may work better in treating patients with aggressive B-cell non-Hodgkin lymphoma.
This phase II trial studies how well ultra low dose orbital radiation therapy works in treating patients with stage I-IV low grade (indolent) B-cell lymphoma or mantle cell lymphoma involving the orbit of the eye (space enclosed by the borders of the eye socket). Orbital radiation therapy uses external beam radiation to destroy cancer cells. Using ultra low dose orbital radiation therapy may be effective in treating indolent B-cell lymphoma or mantle cell lymphoma involving the eye and may have fewer side effects.
This phase II trial studies how well obinutuzumab and ibrutinib work as front line therapy in treating patients with indolent non-Hodgkin's lymphoma. Monoclonal antibodies, such as obinutuzumab, may interfere with the ability of cancer cells to grow and spread. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving obinutuzumab and ibrutinib may work better in treating patients with non-Hodgkin's lymphomas.