283 Clinical Trials for Various Conditions
The overarching hypothesis for this study is that a safe and tolerable dose (i.e., the maximum tolerated dose) will be identified for loncastuximab tesirine in combination with dose-adjusted etoposide phosphate, prednisone, vincristine sulfate (Oncovin), cyclophosphamide, doxorubicin hydrochloride (hydroxydaunorubicin), and rituximab (DA-EPOCH-R) for patients with previously untreated aggressive B-cell lymphoid malignancies.
This research study is being conducted to treat patients with B-cell lymphoid malignancies. These types of cancers include diffuse large cell (DLBCL) non-Hodgkin's lymphoma (NHL), mantle cell NHL, any indolent B cell NHL (such as follicular, small cell or marginal zone NHL), or chronic lymphocytic leukemia (CLL). Patients with these types of lymphomas have been shown to benefit from peripheral blood stem cell transplantation (PBSCT). PBSCT uses healthy blood stem cells from a donor to replace your diseased or damaged bone marrow. Before undergoing PBSCT, you'll receive chemotherapy and/or radiation to destroy your diseased cells and prepare your body for the donor cells. This is called a "conditioning regimen." Non-myeloablative (NMA) conditioning causes minimal cell death. This research study will look at a course of treatment using NMA conditioning regimen including low dose chemotherapy and low dose radiation as well as rituximab and PBSCT from a compatible donor. The primary aim is to obtain a preliminary estimate of the overall and event-free survival 1 year post-transplant after NMA.
This is Phase 1b/2 study to investigate the safety and effectiveness of the investigational drug, cirmtuzumab, when given in combination with ibrutinib in patients with B-cell lymphoid malignancies. Cirmtuzumab is a monoclonal antibody that attaches to a protein (called ROR 1) that is found on hematologic tumor cells. ROR1 has been shown to play a role in cell signaling that cause leukemia and lymphoma cells to grow and survive. ROR1 is rarely found on healthy cells.
This study evaluated the safety and preliminary efficacy of BGB-3111 (zanubrutinib) in combination with obinutuzumab in participants with B-cell lymphoid malignancies.
This study evaluated the safety, tolerability, pharmacokinetic profile and efficacy of BGB-3111 in participants with B-cell lymphoid malignancies.
The purpose of this study is to determine whether ublituximab in combination with lenalidomide (Revlimid®) is safe and effective in patients with B-Cell Lymphoid Malignancies who have relapsed or are refractory after CD20 directed antibody therapy.
This is a Phase 0/1 open-label, non-randomized, biomarker and pharmacodynamic study in patients with advanced B-cell lymphoid malignancies, including B-cell chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), acute lymphocytic leukemia (ALL), multiple myeloma (MM), Waldenström's macroglobulinemia (WM), mantle cell lymphoma, follicular lymphoma, or diffuse large B-cell lymphoma (DLBCL) who have failed at least one prior therapy and for whom no standard curative therapy exists. Patients with advanced stage disease are those whose disease is resistant or refractory to standard chemotherapy or biological therapies.
This study will be a 2-part, open-label, single-center relative bioavailability, PPI effect, food-effect and particle size effect randomized crossover study of acalabrutinib tablets in healthy subjects (males or females). The study will be divided in 2 study parts; following a review of the safety and Pharmacokinetics (PK) data from Part 1, the study is planned to be continued with Part 2.
Background: * After allogeneic (donor) stem cell transplantation, a new immune system grows in the patient from the transplanted donor stem cells and lymphocytes (type of immune cell). Donor lymphocytes, unlike the patient s own lymphocytes, often can recognize the patient s tumor cells as being foreign and destroy them. * It is thought that tumor shrinkage after stem cell transplantation is the result of donor T lymphocytes, or T cells. Some studies show that patients with tumors that have T cells are better able to keep tumor growth in check. * Patients who have had donor stem cell transplantation may have donor T cells in their tumors that can recognize and fight their cancer. Compared with donor T cells taken directly from the donor and infused into the patient, donor T cells found in patients tumors may be specific for the cancer cells and thus better able to attack tumor. Also, because the T cells found their way to the tumor, they may be less likely to recognize and attack non-tumor tissues than the T cells given in donor lymphocyte infusions. * The T cells may be especially effective at controlling tumor if they are given an additional stimulus to become active. Costimulation is the name of the body s natural process for providing an extra stimulus, and can be performed on cells in the laboratory. Costimulation can produce large numbers of activated cells that may be able to attack cancer cells and shrink tumors. Objectives: -To evaluate the ability of lymphocytes found in tumors from patients who have received donor stem cell transplants to control their tumor growth. Eligibility: -Patients between 18 and 75 years of age with a B-cell cancer that has continued to grow or recurred after remission following allogeneic stem cell transplantation. This includes patients who have received transplants from unrelated donors and cord blood. Design: * Immune cells are collected from patients blood and blood from their stem cell donor. * Patients undergo surgery to remove their tumor and a small piece of skin. In the laboratory, donor T cells are isolated from the tumor and costimulated to expand the number of cells and activate them. * The expanded, activated T cells as infused into the patient. * Patients have a needle biopsy and possibly surgery to remove a sample of remaining tumor for research studies. * Patients are followed at the NIH clinic 48 hours after the cell infusion, and again at 1, 2, 4, 8 and 12 weeks after the infusion. Tumor size is monitored every month with CT scans, and possibly also with a PET or bone marrow aspiration and biopsy, for the first 3 months after the cells are infused. Thereafter, visits are less frequent (every 3 months, then every 6 months, and then yearly) during a minimum 5-year follow-up.
Primary objective: * To determine the safety of adback T- or Natural Killer (NK) cells in patients with lymphoid malignancies receiving allogeneic stem cell transplantation with Campath-IH containing conditioning regimen. Secondary objective: * To determine the efficacy (disease-free-survival) of this strategy.
This study is developed by the investigator and is a, phase I, single arm, clinical trial that will enroll subjects with untreated diffuse large B-cell lymphoma (DLCBL) at high risk for poor outcome. The types of treatments given will be shared with participants. The aims are: 1. To assess the safety and how well the participants tolerate the treatment 2. Assess the response of the tumor to treatment to estimate complete response 3. Assess the response of the tumor to treatment to estimate progression-free survival
This phase I trial tests the safety, side effects and best infusion dose of genetically engineered cells called anti-CD19/CD20/CD22 chimeric antigen receptor (CAR) T-cells following a short course of chemotherapy with cyclophosphamide and fludarabine in treating patients with lymphoid cancers (malignancies) that have come back (recurrent) or do not respond to treatment (refractory). Lymphoid malignancies eligible for this trial are: non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and B-prolymphocytic leukemia (B-PLL). T-cells (a type of white blood cell) form part of the body's immune system. CAR-T is a type of cell therapy that is used with gene-based therapies. CAR T-cells are made by taking a patient's own T-cells and genetically modifying them with a virus so that they are recognized by a group of proteins called CD19/CD20/CD22 which are found on the surface of cancer cells. Anti-CD19/CD20/CD22 CAR T-cells can recognize CD19/CD20/CD22, bind to the cancer cells and kill them. Giving combination chemotherapy helps prepare the body before CAR T-cell therapy. Giving CAR-T after cyclophosphamide and fludarabine may kill more tumor cells.
This is an open-label, Phase 1/2 study designed to characterize the safety, tolerability, Pharmacokinetics(PK), and preliminary antitumor activity of AVM0703 administered as a single intravenous (IV) infusion to patients with lymphoid malignancies.
A two part, Phase 1b/2 study to define a recommended Phase 2 dose of VRx-3996 in combination with valganciclovir (Phase 1b) designed to evaluate the efficacy of this combination in relapsed/refractory Epstein-Barr Virus Associated Lymphoma (EBV+ lymphomas).
This is an open-label Phase 1b/2 study in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL)or non hodgkin's lymphoma (NHL) who have failed prior standard of care therapies including a BTK inhibitor where one is approved for the indication.
The purpose of this study is to evaluate how well the study drug works and safety of oral decitabine in patients with refractory or relapsed lymphoid malignancies. The decitabine is being given at a lower dose than used for its approved use. It is also being given with another drug, tetrahydrouridine (THU), to improve the exposure of lymphoma cells to decitabine.
This is an open label, phase I/IIa, 3 x 3 dose escalation study with an initial phase I followed by a disease focused phase II. The primary objective of the phase I is to determine the maximum tolerated dose (MTD) and dose limiting toxicity (DLT) of the combinations of oral 5-azacitidine and romidepsin in patients with lymphoma. The safety and toxicity of this combination will be evaluated throughout the entire study. If the combination of oral 5-azacitidine and romidepsin is found to be feasible and an MTD is established, the phase II part of the study will be initiated. Phase II will consist of a 2 stage design of the combination of oral 5-azacitidine and romidepsin for patients with relapsed or refractory T-cell lymphomas.
This is a study to test how safe the combination of the drugs Romidepsin and Pralatrexate are in patients with lymphoid malignancies and to determine the dose of the combination of drugs that is safest. If the combination is determined to be safe, the study will continue accrual patients with peripheral T-Cell lymphoma (PTCL).
This phase I/II trial studies the side effects and the best dose of radiolabeled monoclonal antibody when given together with combination chemotherapy before stem cell transplant and to see how well it works in treating patients with high-risk lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium Y 90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Giving chemotherapy before a stem transplant stops the growth of cancer cells by stopping them from dividing or killing them. Stem cells collected from the patient's blood are then returned to the patient to replace the blood-forming cells that were destroyed by the radiolabeled monoclonal antibody and chemotherapy.
This pilot clinical trial studies the side effects of lenalidomide and ipilimumab after stem cell transplant in treating patients with hematologic or lymphoid malignancies. Biological therapies, such as lenalidomide, may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide with ipilimumab may be a better treatment for hematologic or lymphoid malignancies.
This phase I trial studies the side effects and best dose of monoclonal antibody therapy before stem cell transplant in treating patients with relapsed or refractory lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium-90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving radiolabeled monoclonal antibody before a stem cell transplant may be an effective treatment for relapsed or refractory lymphoid malignancies.
This is a multi-center, phase 1, open-label first-in-human study of AMG 319 in subjects with relapsed or refractory lymphoid malignancies. This study consists of two parts. The dose exploration in part 1, studies cohorts of 3 subjects with relapsed or refractory lymphoid malignancies and uses a practical continuous reassessment model \[CRM\] to guide dose escalation and to define the MTD. The dose expansion in part 2 will enroll 20 subjects with CLL at a dose no higher than the MTD and further explore the safety, PK, and clinical activity of AMG 319 in this patient population.
The goal of the clinical research study is to find the highest tolerable dose of nelarabine when given as a continuous infusion to patients with a lymphoid malignancy that has not responded to, or has come back after treatment with chemotherapy. The safety of this drug will also be studied.
This is a Pilot/Phase I, single arm, single center, open label study to determine the safety, efficacy and cellular kinetics of CART19 (CTL019) in chemotherapy resistant or refractory CD19+ leukemia and lymphoma subjects. The study consists of three Phases: 1) a Screening Phase, followed by 2) an Intervention/Treatment Phase consisting of apheresis, lymphodepleting chemotherapy (determined by the Investigator and based on subject's disease burden and histology, as well as on the prior chemotherapy history received), infusions of CTL019, tumor collection by bone marrow aspiration or lymph node biopsy (optional, depending on availability), and 3) a Follow-up Phase. The suitability of subjects' T cells for CTL019 manufacturing was determined at study entry. Subjects with adequate T cells were leukapheresed to obtain large numbers of peripheral blood mononuclear cells for CTL019 manufacturing. The T cells were purified from the peripheral blood mononuclear cells, transduced with TCR-ζ/4-1BB lentiviral vector, expanded in vitro and then frozen for future administration. The number of subjects who had inadequate T cell collections, expansion or manufacturing compared to the number of subjects who had T cells successfully manufactured is a primary measure of feasibility of this study. Unless contraindicated and medically not advisable based on previous chemotherapy, subjects were given conditioning chemotherapy prior to CTL019 infusion. The chemotherapy was completed 1 to 4 days before the planned infusion of the first dose of CTL019. Up to 20 evaluable subjects with CD19+ leukemia or lymphoma were planned to be dosed with CTL019. A single dose of CTL019 (consisting of approximately 5x10\^9 total cells, with a minimal acceptable dose for infusion of 1.5x10\^7 CTL019 cells) was to be given to subjects as fractions (10%, 30% and 60% of the total dose) on Day 0, 1 and 2. A second 100% dose of CTL019 was initially permitted to be given on Day 11 to 14 to subjects, providing they had adequate tolerance to the first dose and sufficient CTL019 was manufactured.
Sometimes researchers change the DNA (genetic material in cells) of donated T cells (white blood cells that support the immune system) using a process called "gene transfer." Gene transfer involves drawing blood from the patient, and then separating out the T-cells using a machine. Researchers then perform a gene transfer to change the T-cells' DNA, and then inject the changed T-cells into the body of the patient. The goal of this clinical research study is to learn if an investigational type of gene transfer can be given reliably and safely in patients with advanced B-cell lymphoma. B cells are a type of white blood cell that fights infection and disease. Lymphoma is a type of cancer that affects the immune system, including B cells. The gene transfer involves drawing blood, separating out T cells (white blood cells that fight infection and disease), changing the T cells' DNA (genetic material) in a specific way, and returning the changed T cells back to the body. Researchers want to learn the highest dose of the changed T cells that can be given safely. Researchers also want to learn how long the changed T cells remain in the participant's body, and if the changed T cells can reliably treat B-cell lymphoma. Finally, researchers want to learn if interleukin-2 (IL-2) can help the changed T cells last longer in the body.
This phase I trial studies the best dose and how well bendamustine works with standard chemotherapy (fludarabine, rituximab) in treating participants with lymphoid cancers undergoing stem cell transplant. Drugs used in chemotherapy, such as fludarabine, bendamustine, and rituximab, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the participant, they may help the participant's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes, the transplanted cells from a donor can make an immune response against the body's normal cells called graft versus host disease. Giving rituximab and methotrexate after the transplant may stop this from happening.
Background: * Mantle cell lymphoma (MCL), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and other lymphoid malignancies are all incurable lymphoid malignancies that mainly affect persons in their late 60s and early 70s. Conventional chemotherapy can achieve high rates of clinical response, but relapse following these responses is almost universal. Patients with lymphoid malignancies relapse because their tumor cells become resistant to chemotherapy; therefore, new types of drugs are needed for better treatment responses. * The investigational drug ON 01910.Na has been shown to be active against MCL and CLL cells, but further research is needed to determine the most safe and effective dose for this drug. Objectives: * To determine the maximum tolerated dose (the highest dose that does not cause unacceptable side effects) of ON 01910.Na in patients with cancers of the lymphoid cells. * To study the effects that ON 01910.Na has on cancers of the lymphoid cells. Eligibility: * Patients 18 years of age and older who have been diagnosed with cancer of the lymphoid cells, and who have not been able to take or have not benefitted from existing treatment options. Design: * Evaluations before the treatment period: * Full medical history and physical examination, and pregnancy test for women. * Blood and urine tests. * Disease evaluation with computerized tomography (CT) scan, magnetic resonance imaging (MRI), electrocardiogram; bone marrow and lymph node biopsies; and skeletal x-rays, if clinically indicated. * Treatment with ON 01910.Na: * Different research subjects will receive increasing doses of ON 01910.Na to determine which dose is considered safe. * To reduce the risk of one rare serious side effect of treatment for myeloid malignancies, patients will take allopurinol 12 hours before and 7 days after each drug infusion, one 300 mg pill each day. * Cycles 1 2: Patients will be admitted to the clinical center for 2 days at the beginning of each cycle. Each cycle involves intravenous infusion of ON 01910.Na continuously for a period of 48 hours, followed by 12 days of observation. Researchers will try to maintain the schedule of 2 days of infusion every 14 days, but the interval between doses may be extended if patients experience delayed recovery blood counts. * Cycles 3 4: Patients who are doing well and choose to continue may receive an additional two cycles (2 days of inpatient infusion followed by 12 days of outpatient observation). At the end of cycle 4, researchers will determine if the disease is responding to therapy. Patients who experience side effects may continue to take ON 01910.Na at a lower dose or may stop receiving the drug. * Patients who respond well to four cycles of ON 01910.Na may be eligible for additional cycles of ON 01910.Na. * Patients who need to start another medication to treat their disease will stop taking ON 01910.Na, and the researchers will perform a final study visit 2 weeks after the last dose of ON 01910.Na. After that, participation in the study will be complete.
This is a Phase 1 dose escalation study to determine the maximum tolerated dose and the dose limiting toxicities of SB1518 when given alone once daily by mouth to subjects with advanced lymphoid malignancies.
This pilot phase II trial studies the side effects and how well giving gemcitabine hydrochloride, carboplatin, dexamethasone, and rituximab together works in treating patients with previously treated lymphoid malignancies. Drugs used in chemotherapy, such as gemcitabine hydrochloride, carboplatin, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving more than one drug (combination chemotherapy) and giving monoclonal antibody therapy with chemotherapy may kill more cancer cells
The goal of this clinical research study is to see if low intensity chemotherapy given together with the new drug 90Y Zevalin, followed by a transplant of blood or marrow stem cells from a donor can increase the length of remission in patients with leukemia and lymphoma. The safety of this treatment will also be studied.