Treatment Trials

521 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Study of MLN8237 in Participants With Advanced Hematological Malignancies
Description

This is an open-label, multicenter, phase 1 study of MLN8237 in participants with advanced hematological malignancies for whom there are limited standard treatment options.

COMPLETED
A Phase I/II Study of Intratumoral Injection of SD-101
Description

This phase 1-2 trial studies the side effects and best dose of ipilimumab in combination with toll-like receptor 9 (TLR9) agonist SD-101 and radiation therapy in treating patients with recurrent low-grade B-cell lymphoma.

COMPLETED
Study of BKM120 & Rituximab in Patients With Relapsed or Refractory Indolent B-Cell Lymphoma
Description

This phase I clinical trial studies the side effects and the best dose of phosphatidylinositol-3-kinase (PI3K) inhibitor BKM120 when given together with rituximab in treating patients with relapsed or refractory low-grade B-cell lymphoma. PI3K inhibitor BKM120 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving PI3K inhibitor BKM120 with rituximab may be an effective treatment for B-cell lymphoma.

TERMINATED
Alisertib With and Without Rituximab in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma
Description

This phase II trial studies how well alisertib with and without rituximab works in treating patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving alisertib with and without rituximab may be an effective treatment for B-cell non-Hodgkin lymphoma

ACTIVE_NOT_RECRUITING
Rituxan/Bendamustine/PCI-32765 in Relapsed DLBCL, MCL, or Indolent Non-Hodgkin's Lymphoma
Description

This phase I trial studies the side effects and best dose of BTK inhibitor PCI-32765 when given together with rituximab and bendamustine hydrochloride in treating patients with recurrent non-Hodgkin lymphoma (NHL). BTK inhibitor PCI-32765 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving BTK inhibitor PCI-32765 together with rituximab and bendamustine hydrochloride may kill more cancer cells.

WITHDRAWN
Obatoclax Mesylate, Rituximab, and Bendamustine Hydrochloride in Treating Patients With Relapsed or Refractory Non-Hodgkin Lymphoma
Description

This phase I/II trial is studying the side effects and the best dose of obatoclax mesylate when given together with rituximab and bendamustine hydrochloride to see how well it works compared with rituximab and bendamustine hydrochloride alone in treating patients with relapsed or refractory non-Hodgkin lymphoma. Obatoclax mesylate may stop the growth of cancer cells by blocking some of the proteins needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and help kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as bendamustine hydrochloride, also work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving obatoclax mesylate together with rituximab and bendamustine hydrochloride may kill more cancer cells

COMPLETED
Sorafenib in Treating Patients With Metastatic or Unresectable Solid Tumors, Multiple Myeloma, or Non-Hodgkin's Lymphoma With or Without Impaired Liver or Kidney Function
Description

This phase I trial is studying the side effects and best dose of sorafenib in treating patients with metastatic or unresectable solid tumors, multiple myeloma, or non-Hodgkin's lymphoma with or without impaired liver or kidney function. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Sorafenib may have different effects in patients who have changes in their liver or kidney function

Conditions
Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueNodal Marginal Zone B-cell LymphomaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Small Lymphocytic LymphomaRefractory Multiple MyelomaSplenic Marginal Zone LymphomaStage II Multiple MyelomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaUnspecified Adult Solid Tumor, Protocol SpecificWaldenström Macroglobulinemia
COMPLETED
Iodine I 131 Tositumomab and Fludarabine Phosphate in Treating Older Patients Who Are Undergoing an Autologous or Syngeneic Stem Cell Transplant for Relapsed or Refractory Non-Hodgkin's Lymphoma
Description

This phase I trial studies the side effects and best dose of fludarabine (fludarabine phosphate) when given together with iodine I 131 tositumomab in treating older patients who are undergoing an autologous or syngeneic stem cell transplant for relapsed or refractory B-cell non-Hodgkin's lymphoma (NHL). Radiolabeled monoclonal antibodies, such as iodine I 131 tositumomab, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy, such as fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. A peripheral stem cell transplant may be able to replace blood-forming cells that were destroyed by chemotherapy and radiation therapy. Giving iodine I 131 tositumomab together with fludarabine followed by autologous stem cell transplant may be an effective treatment for NHL

COMPLETED
Bortezomib and Fludarabine With or Without Rituximab in Treating Patients With Relapsed or Refractory Indolent Non-Hodgkin's Lymphoma or Chronic Lymphocytic Leukemia
Description

This phase I trial is studying the side effects and best dose of bortezomib when given together with fludarabine with or without rituximab in treating patients with relapsed or refractory indolent non-Hodgkin's lymphoma or chronic lymphocytic leukemia. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth. Drugs used in chemotherapy, such as fludarabine, work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving bortezomib together with fludarabine with or without rituximab may kill more cancer cells.

TERMINATED
Oblimersen and Gemcitabine in Treating Patients With Advanced Solid Tumor or Lymphoma
Description

Drugs used in chemotherapy such as gemcitabine use different ways to stop cancer cells from dividing so they stop growing or die. Oblimersen may increase the effectiveness of gemcitabine by making cancer cells more sensitive to the drug. This phase I trial is studying the side effects and best dose of oblimersen and gemcitabine in treating patients with metastatic or unresectable solid tumors or lymphoma

COMPLETED
Bryostatin 1 Plus Vincristine in Treating Patients With Progressive or Relapsed Non-Hodgkin's Lymphoma After Bone Marrow or Stem Cell Transplantation
Description

Phase II trial to study the effectiveness of combining bryostatin 1 with vincristine in treating patients who have progressive or relapsed non-Hodgkin's lymphoma after autologous bone marrow transplantation or autologous stem cell transplantation. Drugs used in chemotherapy such as vincristine use different ways to stop cancer cells from dividing so they stop growing or die. Bryostatin 1 may help vincristine kill more cancer cells by making the cells more sensitive to the drug

COMPLETED
Rituximab and Interleukin-12 in Treating Patients With B-Cell Non-Hodgkin's Lymphoma
Description

Monoclonal antibodies, such as rituximab, can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Interleukin-12 may kill cancer cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Combining rituximab with interleukin-12 may kill more cancer cells. This randomized phase II trial is comparing how well giving rituximab together with two different schedules of interleukin-12 works in treating patients with B-cell non-Hodgkin lymphoma.

TERMINATED
Geldanamycin Analogue in Treating Patients With Advanced Solid Tumors or Non-Hodgkin's Lymphoma
Description

Phase I trial to study the effectiveness of geldanamycin analogue in treating patients who have advanced solid tumors or non-Hodgkin's lymphoma. Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die.

COMPLETED
Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia
Description

Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of monoclonal antibody therapy in treating patients who have chronic lymphocytic leukemia, lymphocytic lymphoma, acute lymphoblastic leukemia, or acute myeloid leukemia.

TERMINATED
Radiolabeled Monoclonal Antibody Plus Rituximab With and Without Filgrastim and Interleukin-11 in Treating Patients With Relapsed or Refractory Non-Hodgkin's Lymphoma
Description

Phase I/II trial to study the effectiveness of combining radiolabeled monoclonal antibody therapy and rituximab with and without filgrastim and interleukin-11 in treating patients who have relapsed or refractory non-Hodgkin's lymphoma. Radiolabeled monoclonal antibodies can locate cancer cells and deliver cancer-killing substances to them without harming normal cells. Biological therapies such as filgrastim and interleukin-11 use different ways to stimulate the immune system and stop cancer cells from growing.

TERMINATED
Arsenic Trioxide in Treating Patients With Relapsed or Refractory Lymphoma or Leukemia
Description

Phase II trial to study the effectiveness of arsenic trioxide in treating patients who have relapsed or refractory lymphoma or leukemia. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die

TERMINATED
Umbralisib and Rituximab as Initial Therapy for Patients With Follicular Lymphoma and Marginal Zone Lymphoma
Description

This research is being done to assess Umbralisib and Rituximab as a first line therapy for Follicular Lymphoma or Marginal Zone Lymphoma.

RECRUITING
Myeloablative Allo HSCT With Related or Unrelated Donor for Heme Disorders
Description

This is a Phase II study of allogeneic hematopoietic stem cell transplant (HCT) using a myeloablative preparative regimen (of either total body irradiation (TBI); or, fludarabine/busulfan for patients unable to receive further radiation). followed by a post-transplant graft-versus-host disease (GVHD) prophylaxis regimen of post-transplant cyclophosphamide (PTCy), tacrolimus (Tac), and mycophenolate mofetil (MMF).

TERMINATED
Adoptive TReg Cell for Suppression of aGVHD After UCB HSCT for Heme Malignancies
Description

This is a single center pilot study of a non-myeloablative umbilical cord blood transplant for the treatment of a hematological malignancy with a single infusion of T regulatory (Treg) given shortly after UCB transplantation.

TERMINATED
A Study of ME-401 in Subjects With CLL/SLL, FL, and B-cell Non Hodgkin's Lymphoma
Description

A Three-Arm Study of ME-401 in Subjects with Relapsed/Refractory CLL/SLL or FL, of ME-401 in Combination with Rituximab in Subjects with Relapsed/Refractory CLL/SLL or B-cell NHL, and of ME-401 in Combination with Zanubrutinib in Subjects with Relapsed/Refractory CLL/SLL or B-cell NHL

ACTIVE_NOT_RECRUITING
UCB Transplant for Hematological Diseases Using a Non Myeloablative Prep
Description

This is a phase II trial using a non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen with modifications based on factors including diagnosis, disease status, and prior treatment. Single or double unit selected according to current University of Minnesota umbilical cord blood graft selection algorithm.

ACTIVE_NOT_RECRUITING
Lenalidomide and Combination Chemotherapy (DA-EPOCH-R) in Treating Patients With MYC-Associated B-Cell Lymphomas
Description

This phase I/II trial studies the side effects and best dose of lenalidomide when given together with combination chemotherapy and to see how well they work in treating patients with v-myc myelocytomatosis viral oncogene homolog (avian) (MYC)-associated B-cell lymphomas. Lenalidomide may stop the growth of B-cell lymphomas by blocking the growth of new blood vessels necessary for cancer growth and by blocking some of the enzymes needed for cell growth. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, doxorubicin hydrochloride, cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may block cancer growth in different ways by targeting certain cells. Giving lenalidomide together with combination chemotherapy may be an effective treatment in patients with B-cell lymphoma.

Conditions
Adult Grade III Lymphomatoid GranulomatosisB-cell Chronic Lymphocytic LeukemiaContiguous Stage II Adult Diffuse Large Cell LymphomaContiguous Stage II Adult Diffuse Mixed Cell LymphomaContiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaContiguous Stage II Adult Immunoblastic Large Cell LymphomaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Grade 3 Follicular LymphomaContiguous Stage II Mantle Cell LymphomaContiguous Stage II Marginal Zone LymphomaContiguous Stage II Small Lymphocytic LymphomaCutaneous B-cell Non-Hodgkin LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaProgressive Hairy Cell Leukemia, Initial TreatmentSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage 0 Chronic Lymphocytic LeukemiaStage I Adult Diffuse Large Cell LymphomaStage I Adult Diffuse Mixed Cell LymphomaStage I Adult Diffuse Small Cleaved Cell LymphomaStage I Adult Hodgkin LymphomaStage I Adult Immunoblastic Large Cell LymphomaStage I Chronic Lymphocytic LeukemiaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Small Lymphocytic LymphomaStage II Adult Hodgkin LymphomaStage II Chronic Lymphocytic LeukemiaStage II Small Lymphocytic LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Chronic Lymphocytic LeukemiaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaTesticular LymphomaUntreated Hairy Cell LeukemiaWaldenström Macroglobulinemia
TERMINATED
CPI-613, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of CPI-613 (6,8-bis\[benzylthio\]octanoic acid) when given together with bendamustine hydrochloride and rituximab in treating patients with B-cell non-Hodgkin lymphoma that has come back or has not responded to treatment. Drugs used in chemotherapy, such as 6,8-bis(benzylthio)octanoic acid and bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may find cancer cells and help kill them. Giving 6,8-bis(benzylthio)octanoic acid with bendamustine hydrochloride and rituximab may kill more cancer cells.

TERMINATED
A Phase II Study of Doxycycline in Relapsed NHL
Description

The purpose of this study is to determine whether doxycycline is effective in the treatment of relapsed Non Hodgkin Lymphomas (NHL).

COMPLETED
Bortezomib and Filgrastim to Promote Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma
Description

This clinical trial studies peripheral blood hemapoietic stem cell mobilization with the combination of bortezomib and G-CSF (filgrastim) in multiple myeloma and non-Hodgkin lymphoma patients.

Conditions
Adult Grade III Lymphomatoid GranulomatosisB-cell Chronic Lymphocytic LeukemiaContiguous Stage II Adult Burkitt LymphomaContiguous Stage II Adult Diffuse Large Cell LymphomaContiguous Stage II Adult Diffuse Mixed Cell LymphomaContiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaContiguous Stage II Adult Immunoblastic Large Cell LymphomaContiguous Stage II Adult Lymphoblastic LymphomaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Grade 3 Follicular LymphomaContiguous Stage II Mantle Cell LymphomaContiguous Stage II Marginal Zone LymphomaContiguous Stage II Small Lymphocytic LymphomaCutaneous B-cell Non-Hodgkin LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaProgressive Hairy Cell Leukemia, Initial TreatmentRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Small Lymphocytic LymphomaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage I Adult Burkitt LymphomaStage I Adult Diffuse Large Cell LymphomaStage I Adult Diffuse Mixed Cell LymphomaStage I Adult Diffuse Small Cleaved Cell LymphomaStage I Adult Immunoblastic Large Cell LymphomaStage I Adult Lymphoblastic LymphomaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Multiple MyelomaStage I Small Lymphocytic LymphomaStage II Multiple MyelomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaUntreated Hairy Cell LeukemiaWaldenström Macroglobulinemia
RECRUITING
Umbilical Cord Blood Transplantation Using a Myeloablative Preparative Regimen for Hematological Diseases
Description

This is a treatment guideline for an unrelated umbilical cord blood transplant (UCBT) using a myeloablative preparative regimen for the treatment of hematological diseases, including, but not limited to acute leukemias. The myeloablative preparative regimen will consist of cyclophosphamide (CY), fludarabine (FLU) and fractionated total body irradiation (TBI).

COMPLETED
Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant
Description

This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.

Conditions
Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaChildhood Burkitt LymphomaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Nasal Type Extranodal NK/T-cell LymphomaContiguous Stage II Adult Burkitt LymphomaContiguous Stage II Adult Diffuse Large Cell LymphomaContiguous Stage II Adult Diffuse Mixed Cell LymphomaContiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaContiguous Stage II Adult Immunoblastic Large Cell LymphomaContiguous Stage II Adult Lymphoblastic LymphomaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Grade 3 Follicular LymphomaContiguous Stage II Mantle Cell LymphomaContiguous Stage II Marginal Zone LymphomaContiguous Stage II Small Lymphocytic LymphomaCutaneous B-cell Non-Hodgkin LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Hairy Cell LeukemiaSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage I Adult Burkitt LymphomaStage I Adult Diffuse Large Cell LymphomaStage I Adult Diffuse Mixed Cell LymphomaStage I Adult Diffuse Small Cleaved Cell LymphomaStage I Adult Hodgkin LymphomaStage I Adult Immunoblastic Large Cell LymphomaStage I Adult Lymphoblastic LymphomaStage I Adult T-cell Leukemia/LymphomaStage I Childhood Anaplastic Large Cell LymphomaStage I Childhood Hodgkin LymphomaStage I Childhood Large Cell LymphomaStage I Childhood Lymphoblastic LymphomaStage I Childhood Small Noncleaved Cell LymphomaStage I Cutaneous T-cell Non-Hodgkin LymphomaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Small Lymphocytic LymphomaStage IA Mycosis Fungoides/Sezary SyndromeStage IB Mycosis Fungoides/Sezary SyndromeStage II Adult Hodgkin LymphomaStage II Adult T-cell Leukemia/LymphomaStage II Childhood Anaplastic Large Cell LymphomaStage II Childhood Hodgkin LymphomaStage II Childhood Large Cell LymphomaStage II Childhood Lymphoblastic LymphomaStage II Childhood Small Noncleaved Cell LymphomaStage II Cutaneous T-cell Non-Hodgkin LymphomaStage IIA Mycosis Fungoides/Sezary SyndromeStage IIB Mycosis Fungoides/Sezary SyndromeStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-cell Leukemia/LymphomaStage III Childhood Anaplastic Large Cell LymphomaStage III Childhood Hodgkin LymphomaStage III Childhood Large Cell LymphomaStage III Childhood Lymphoblastic LymphomaStage III Childhood Small Noncleaved Cell LymphomaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IIIA Mycosis Fungoides/Sezary SyndromeStage IIIB Mycosis Fungoides/Sezary SyndromeStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-cell Leukemia/LymphomaStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Hodgkin LymphomaStage IV Childhood Large Cell LymphomaStage IV Childhood Lymphoblastic LymphomaStage IV Childhood Small Noncleaved Cell LymphomaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaStage IVA Mycosis Fungoides/Sezary SyndromeStage IVB Mycosis Fungoides/Sezary SyndromeT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaWaldenström Macroglobulinemia
COMPLETED
Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Phase Chronic Myelogenous LeukemiaChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaWaldenström Macroglobulinemia
ACTIVE_NOT_RECRUITING
Genetically Modified T-cell Infusion Following Peripheral Blood Stem Cell Transplant in Treating Patients With Recurrent or High-Risk Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of genetically modified T-cells following peripheral blood stem cell transplant in treating patients with recurrent or high-risk non-Hodgkin lymphoma. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. Giving an infusion of the donor's T cells (donor lymphocyte infusion) later may help the patient's immune system see any remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect)