30 Clinical Trials for Various Conditions
This study will determine the safety and possibility of giving the amino acid, leucine, in patients with Diamond Blackfan anemia(DBA)who are on dependent on red blood cell transfusions. The leucine is expected to produce a response in patients with DBA to the point where red blood cell production is increased. Red cell transfusions can then be less frequent or possibly discontinued. The investigators will study the side effects, if any, of giving leucine to DBA patients. Leucine levels of leucine will be obtained at baseline and during the study. The drug leucine will be provided in capsule form and taken 3 times a day for a total of 9 months.
The researchers hypothesize that it will be possible to perform unrelated bone marrow or cord blood transplants in a safer manner by using less intensive therapy yet still achieve an acceptable level of donor cell engraftment for non-malignant congenital bone marrow failure disorders.
Background: A prospective cohort of Inherited Bone Marrow Failure Syndrome (IBMFS) will provide new information regarding cancer rates and types in these disorders. Pathogenic variant(s) in IBMFS genes are relevant to carcinogenesis in sporadic cancers. Patients with IBMFS who develop cancer differ in their genetic and/or environmental features from patients with IBMFS who do not develop cancer. These cancer-prone families are well suited for cancer screening and prevention trials targeting those at increased genetic risk of cancer. Carriers of IBMFS pathogenic variant(s) are at increased risk of cancer. The prototype disorder is Fanconi's Anemia (FA); other IBMFS will also be studied. Objectives: To determine the types and incidence of specific cancers in patients with an IBMFS. To investigate the relevance of IBMFS pathogenic variant(s) in the carcinogenesis pathway of the sporadic counterparts of IBMFS-associated cancers. To identify risk factors for IBMFS-related cancers in addition to the primary germline pathogenic variant(s). To determine the risk of cancer in IBMFS carriers. Eligibility: North American families with a proband with an IBMFS. IBMFS suspected by phenotype, confirmed by pathogenic variant(s) in an IBMFS gene, or by clinical diagnostic test. Fanconi's anemia: birth defects, marrow failure, early onset malignancy; positive chromosome breakage result. Diamond-Blackfan anemia: pure red cell aplasia; elevated red cell adenosine deaminase. Dyskeratosis congenita: dysplastic nails, lacey pigmentation, leukoplakia; marrow failure. Shwachman-Diamond Syndrome: malabsorption; neutropenia. Amegakaryocytic thrombocytopenia: early onset thrombocytopenia. Thrombocytopenia absent radii: absent radii; early onset thrombocytopenia. Severe Congenital Neutropenia: neutropenia, pyogenic infections, bone marrow maturation arrest. Pearson's Syndrome: malabsorption, neutropenia, marrow failure, metabolic acidosis; ringed sideroblasts. Other bone marrow failure syndromes: e.g. Revesz Syndrome, WT, IVIC, radio-ulnar synostosis, ataxia-pancytopenia. First degree relatives of IBMFS-affected subjects as defined here, i.e. siblings (half or full), biologic parents, and children. Grandparents of IBMFS-affected subjects. Patients in the general population with sporadic tumors of the types seen in the IBMFS (head and neck, gastrointestinal, and anogenital cancer), with none of the usual risk factors (e.g. smoking, drinking, HPV). Design: Natural history study, with questionnaires, clinical evaluations, clinical and research laboratory test, review of medical records, cancer surveillance. Primary endpoints are all cancers, solid tumors, and cancers specific to each type of IBMFS. Secondary endpoints are markers of pre-malignant conditions, such as leukoplakia, serum or tissue evidence of carcinogenic viruses, and bone marrow morphologic myelodyplastic syndrome or cytogenetic clones.
This phase II trial tests whether treosulfan, fludarabine, and rabbit antithymocyte globulin (rATG) work when given before a blood or bone marrow transplant (conditioning regimen) to cause fewer complications for patients with bone marrow failure diseases. Chemotherapy drugs, such as treosulfan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Fludarabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. rATG is used to decrease the body's immune response and may improve bone marrow function and increase blood cell counts. Adding treosulfan to a conditioning regimen with fludarabine and rATG may result in patients having less severe complications after a blood or bone marrow transplant.
This is a study to collect the outcomes of stem cell transplantation for patients with hematologic diseases other than cancer.
This study's goal is to determine the frequency and severity of acute graft versus host disease, to evaluate incidence of primary and secondary graft rejection, to assess event free survival and overall survival, to determine the time to neutrophil and platelet engraftment, to determine the time to immune reconstitution (including normalization of T, B and natural killer (NK) cell repertoire and Immunoglobulin G production), and to establish the incidence of infectious complications including bacterial, viral, fungal and atypical mycobacterial and other infections following CD34+ selection in children, adolescents and young adults receiving an allogeneic peripheral blood stem cell transplant from a family member or unrelated adult donor for a non-malignant disease.
This is a single arm, phase I study to assess the tolerability of abatacept when combined with cyclosporine and mycophenolate mofetil as graft versus host disease prophylaxis in children undergoing unrelated hematopoietic stem cell transplant for serious non-malignant diseases as well as to assess the immunological effects of abatacept. Participants will be followed for 2 years.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
Allogeneic blood and marrow transplantation remains the only viable cure for children who suffer from many serious non-malignant hematological diseases. Transplantation, however, carries a high risk of fatal complications. Much of the risk stems from the use of high dose radiation and chemotherapy for conditioning, the treatment administered just prior to transplant that eliminates the patients' marrow and immune system, effectively preventing rejection of the donors' cells. Attempts to make blood and marrow transplantation safer for children with non-malignant diseases by using lower doses of radiation and chemotherapy have largely failed because of a high rate of graft rejection. In many such cases, it is likely that the graft is rejected because the recipient is sensitized to proteins on donor cells, including bone marrow cells, by blood transfusions. The formation of memory immune cells is a hallmark of sensitization, and these memory cells are relatively insensitive to chemotherapy and radiation. Alefacept, a drug used to treat psoriasis, on the other hand, selectively depletes these cells. The investigators are conducting a pilot study to begin to determine whether incorporating alefacept into a low dose conditioning regimen can effectively mitigate sensitization and, thereby, prevent rejection of allogeneic blood and marrow transplants for multiply transfused children with non-malignant hematological diseases.
This is a clinical trial of bone marrow transplantation for patients with the diagnosis of a genetic disease of blood cells that do not have an HLA-matched sibling donor. Genetic diseases of blood cell include: Red blood cell defects e.g. hemoglobinopathies (sickle cell disease and thalassemia), Blackfan-Diamond anemia and congenital or chronic hemolytic anemias; White blood cells defects/immune deficiencies e.g. chronic granulomatous disease, Wiskott-Aldrich syndrome,Osteopetrosis, Kostmann's syndrome (congenital neutropenia), Hereditary Lymphohistiocytosis (HLH); Platelets defects e.g.Congenital amegakaryocytic thrombocytopenia; Metabolic/storage disorders e.g. leukodystrophies,mucopolysaccharidoses as Hurler disease;Stem cell defects e.g.reticular agenesis, among many other rare similar conditions. The study treatment plan uses a new transplant treatment regimen that aims to try to decrease the acute toxicities and complications associated with the standard treatment plans and to improve outcome The blood stem cells will be derived from either unrelated donor or unrelated umbilical cord blood.
This study tests the clinical outcomes of one of two preparative regimens (determined by available donor source) in patients with non-malignant hemoglobinopathies. The researchers hypothesize that these regimens will have a positive effect on post transplant engraftment and the incidence of graft-versus-host-disease. Regimen A2 has replaced Regimen A in this study. Two patients were treated on Regimen A but did not have evidence of initial engraftment thus triggering the stopping rule for that arm of this study.
The purpose of this study is to determine a safe dose of BPX-501 gene modified T cells infused after a haplo-identical stem cell transplant to facilitate engraftment and the safety of Rimiducid (AP1903) on day 7 to prevent GVHD.
The purpose of this study is to learn more about the effects of (classification determinant) CD34+ stem cell selection on graft versus host disease (GVHD) in children, adolescents, and young adults. CD34+ stem cells are the cells that make all the types of blood cells in the body. GVHD is a condition that results from a reaction of transplanted donor T-lymphocytes (a kind of white blood cell) against the recipient's body and organs. Study subjects will be offered treatment involving the use of the CliniMACS® Reagent System (Miltenyi Biotec), a CD34+ selection device to remove T-cells from a peripheral blood stem cell transplant in order to decrease the risk of acute and chronic GVHD. This study involves subjects who are diagnosed with a malignant disease, that has either failed standard therapy or is unlikely to be cured with standard non-transplant therapy, who will receive a peripheral blood stem cell transplant. A malignant disease includes the following: Chronic Myeloid Leukemia (CML) in chronic phase, accelerated phase or blast crisis; Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); or Lymphoma (Hodgkin's and Non-Hodgkin's).
The purpose of this study is to determine the safety and dosing of drug Sotatercept, as a subcutaneous injection, to stimulate production of red blood cell production. To be given every 28 days for up to four doses.
This phase II clinical trial studies how well treosulfan and fludarabine phosphate with or without low dose radiation before donor stem cell transplantation works in treating patients with nonmalignant (noncancerous) diseases. Hematopoietic cell transplantation has been shown to be curative for many patients with nonmalignant (noncancerous) diseases such as primary immunodeficiency disorders, bone marrow failure syndromes, hemoglobinopathies, and inborn errors of metabolism (metabolic disorders). Powerful chemotherapy drugs and/or radiation are often used to condition the patient before infusion of the new healthy donor cells. The purpose of the conditioning therapy is to destroy the patient's abnormal bone marrow which doesn't work properly in order to make way for the new healthy donor cells which functions normally. Although effective in curing the patient's disease, many hematopoietic cell transplantation regimens use intensive chemotherapy and/or radiation which can be quite toxic, have significant side effects, and can potentially be life-threatening. Investigators are investigating whether a new conditioning regimen that uses less intensive drugs (treosulfan and fludarabine phosphate) with or without low dose radiation results in new blood-forming cells (engraftment) of the new donor cells without increased toxicities in patients with nonmalignant (noncancerous) diseases.
Background: Diamond-Blackfan anemia (DBA) is an inherited disease that affects the bone marrow. People with DBA have chronic anemia that can be severe. Many must have frequent transfusions of red blood cells. Current treatments for DBA all have risks of serious side effects. Better treatments are needed. Objective: To test a new drug (bitopertin) in people with DBA. Eligibility: People aged 18 or older with DBA. Design: Participants will be screened. They will have a physical exam; they will have blood tests and a test of their heart function. They will have a bone marrow biopsy: An area of their hip will be numbed, and a needle will be inserted to remove a sample of tissue from inside the bone. Bitopertin is a pill taken by mouth. Participants will take the drug once a day every day for 8 months. They will start with a low dose of the drug; the dosage may increase gradually over time. They will keep a diary to record each dose. Participants will have blood tests every 4 weeks. This may be done in the clinic. Participants may also have telehealth visits; they can have blood drawn at a local lab and sent to the researchers. The bone marrow biopsy and other tests will be repeated after 8 months. Participants who have a positive response to bitopertin will be invited to enter an extended phase of the trial. They may continue to take the drug for 3 more years. Those who choose not to continue in the extended phase may have a follow-up visit 6 months after they stop taking the drug.
This is a single-center, single arm, open-label study of oral lenalidomide monotherapy administered to red blood cell (RBC) transfusion dependent adult subjects with Diamond-Blackfan Anemia (DBA). Primary Objective: To evaluate the erythroid response rate as measured by rate of red blood cell transfusion independence \[MDS International Working Group (IWG) 2000 Criteria will be applied\]. Secondary Objective: 1)To evaluate the tolerability and safety profile of lenalidomide in patients with DBA and other inherited marrow failure syndromes 2) To correlate response to lenalidomide with biologic surrogates of DBA including ribosomal protein mutation status, ex vivo erythroid colony growth, and microarray gene expression
In this study, the investigators test 2 dose levels of thiotepa (5 mg/kg and 10 mg/kg) added to the backbone of targeted reduced dose IV busulfan, fludarabine and rabbit anti-thymocyte globulin (rATG) to determine the minimum effective dose required for reliable engraftment for subjects undergoing hematopoietic stem cell transplantation for non-malignant disease.
The purpose of this study is to collect and store samples and health information for current and future research to learn more about the causes and treatment of blood diseases. This is not a therapeutic or diagnostic protocol for clinical purposes. Blood, bone marrow, hair follicles, nail clippings, urine, saliva and buccal swabs, left over tissue, as well as health information will be used to study and learn about blood diseases by using genetic and/or genomic research. In general, genetic research studies specific genes of an individual; genomic research studies the complete genetic makeup of an individual. It is not known why many people have blood diseases, because not all genes causing these diseases have been found. It is also not known why some people with the same disease are sicker than others, but this may be related to their genes. By studying the genomes in individuals with blood diseases and their family members, the investigators hope to learn more about how diseases develop and respond to treatment which may provide new and better ways to diagnose and treat blood diseases. Primary Objective: * Establish a repository of DNA and cryopreserved blood cells with linked clinical information from individuals with non-malignant blood diseases and biologically-related family members, in conjunction with the existing St. Jude biorepository, to conduct genomic and functional studies to facilitate secondary objectives. Secondary Objectives: * Utilize next generation genomic sequencing technologies to Identify novel genetic alternations that associate with disease status in individuals with unexplained non-malignant blood diseases. * Use genomic approaches to identify modifier genes in individuals with defined monogenic non-malignant blood diseases. * Use genomic approaches to identify genetic variants associated with treatment outcomes and toxicities for individuals with non-malignant blood disease. * Use single cell genomics, transcriptomics, proteomics and metabolomics to investigate biomarkers for disease progression, sickle cell disease (SCD) pain events and the long-term cellular and molecular effects of hydroxyurea therapy. * Using longitudinal assessment of clinical and genetic, study the long-term outcomes and evolving genetic changes in non-malignant blood diseases. Exploratory Objectives * Determine whether analysis of select patient-derived bone marrow hematopoietic progenitor/stem (HSPC) cells or induced pluripotent stem (iPS) cells can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms. * Determine whether analysis of circulating mature blood cells and their progenitors from selected patients with suspected or proven genetic hematological disorders can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms.
This is a data collection study that will examine the general diagnostic and treatment data associated with the reduced-intensity chemotherapy-based regimen paired with simple alemtuzumab dosing strata designed to prevented graft failure and to aid in immune reconstitution following hematopoietic stem cell transplantation.
NOTE: This is a research study and is not meant to be a substitute for clinical genetic testing. Families may never receive results from the study or may receive results many years from the time they enroll. If you are interested in clinical testing please consider seeing a local genetic counselor or other genetics professional. If you have already had clinical genetic testing and meet eligibility criteria for this study as shown in the Eligibility Section, you may enroll regardless of the results of your clinical genetic testing. While it is well recognized that hereditary factors contribute to the development of a subset of human cancers, the cause for many cancers remains unknown. The application of next generation sequencing (NGS) technologies has expanded knowledge in the field of hereditary cancer predisposition. Currently, more than 100 cancer predisposing genes have been identified, and it is now estimated that approximately 10% of all cancer patients have an underlying genetic predisposition. The purpose of this protocol is to identify novel cancer predisposing genes and/or genetic variants. For this study, the investigators will establish a Data Registry linked to a Repository of biological samples. Health information, blood samples and occasionally leftover tumor samples will be collected from individuals with familial cancer. The investigators will use NGS approaches to find changes in genes that may be important in the development of familial cancer. The information gained from this study may provide new and better ways to diagnose and care for people with hereditary cancer. PRIMARY OBJECTIVE: * Establish a registry of families with clustering of cancer in which clinical data are linked to a repository of cryopreserved blood cells, germline DNA, and tumor tissues from the proband and other family members. SECONDARY OBJECTIVE: * Identify novel cancer predisposing genes and/or genetic variants in families with clustering of cancer for which the underlying genetic basis is unknown.
The objective of this study is to evaluate the efficacy of using a reduced-intensity condition (RIC) regimen with umbilical cord blood transplant (UCBT), double cord UCBT, matched unrelated donor (MUD) bone marrow transplant (BMT) or peripheral blood stem cell transplant (PBSCT) in patients with non-malignant disorders that are amenable to treatment with hematopoietic stem cell transplant (HSCT). After transplant, subjects will be followed for late effects and for ongoing graft success.
The main purpose of this study is to examine the outcome of a combined bone marrow and kidney transplant from a partially matched related (haploidentical or "haplo") donor. This is a pilot study, you are being asked to participate because you have a blood disorder and kidney disease. The aim of the combined transplant is to treat both your underlying blood disorder and kidney disease. We expect to have about 10 people participate in this study. Additionally, because the same person who is donating the kidney will also be donating the bone marrow, there may be a smaller chance of kidney rejection and less need for long-term use of anti-rejection drugs. Traditionally, very strong cancer treatment drugs (chemotherapy) and radiation are used to prepare a subject's body for bone marrow transplant. This is associated with a high risk for serious complications, even in subjects without kidney disease. This therapy can be toxic to the liver, lungs, mucous membranes, and intestines. Additionally, it is believed that standard therapy may be associated with a higher risk of a complication called graft versus host disease (GVHD) where the new donor cells attack the recipient's normal body. Recently, less intense chemotherapy and radiation regimens have been employed (these are called reduced intensity regimens) which cause less injury and GVHD to patients, and thus, have allowed older and less healthy patients to undergo bone marrow transplant. In this study, a reduced intensity regimen of chemotherapy and radiation will be used with the intent of producing fewer toxicities than standard therapy. Typical therapy following a standard kidney transplant includes multiple lifelong medications that aim to prevent the recipient's body from attacking or rejecting the donated kidney. These are called immunosuppressant drugs and they work by "quieting" the recipient's immune system to allow the donated kidney to function properly. One goal in our study is to decrease the duration you will need to be on immunosuppressant drugs following your kidney transplant as the bone marrow transplant will provide you with the donor's immune system which should not attack the donor kidney.
The purpose of this clinical trial is to investigate the safety of human placental-derived stem cells (HPDSC) given in conjunction with umbilical cord blood (UCB) stem cells in patients with various malignant or nonmalignant disorders who require a stem cell transplant. Patients will get either full dose (high-intensity) or lower dose (low intensity) chemo- and immunotherapy followed by a stem cell transplantation with UCB and HPDSC.
The goal of this research study is to establish chimerism and avoid graft-versus-host disease in patients with hemoglobinopathies.
RATIONALE: Monoclonal antibodies, such as alemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as fludarabine and busulfan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. A peripheral stem cell, bone marrow , or umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine together with methotrexate and methylprednisolone may stop this from happening. PURPOSE: This phase II trial is studying how well giving alemtuzumab together with fludarabine and busulfan works when given before donor stem cell transplant in treating young patients with hematologic disorders.
RATIONALE: Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from a related or unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow to make stem cells, red blood cells, white blood cells, and platelets. PURPOSE: This clinical trial is studying how well donor umbilical cord blood transplant works in treating patients with hematologic cancer.
Due to an overall and disease free survival of 85% to 100%, allogeneic blood or bone marrow stem cell transplantation using an HLA matched sibling donor is the therapy of choice for patients with severe aplastic anemia (SAA). Unfortunately, only about 25% of patients have such a donor. For patients with SAA lacking a matched sibling donor, immunosuppressive therapy is the current treatment of choice. Approximately 70% of these patients have a complete or partial response to immunosuppressive therapy, achieving transfusion independence and/or growth factor independence. For the approximately 30% of patients who do not respond to immunosuppressive therapy or experience recurrence, alternative donor (matched unrelated, partially matched family member) transplantation is a treatment option. However, graft rejection and graft-versus-host-disease (GVHD) are significant barriers to success, decreasing event-free survival to 30% to 50%. This study offers stem cell transplantation using a partially matched family member (haploidentical) donor to those patients with no available HLA-matched sibling or matched unrelated donor. In an attempt to reduce GVHD and regimen-related toxicity while maintaining adequate engraftment, we plan to infuse a highly purified stem cell graft. The Miltenyi Biotec CliniMACS CD3 depletion system will be used to derive a defined allogeneic graft highly enriched for CD34+ hematopoietic cells and depleted of CD3+ T-lymphocytes from G-CSF mobilized, donor-derived peripheral blood stem cells. Patients 21 years of age and younger with refractory cytopenias are also eligible for this protocol as there are no other potentially curative therapies currently available for these conditions. The primary objective of this study is to evaluate the safety of transplantation using a haploidentical donor product engineered to targeted cell counts using the investigational CliniMACS device for patients with refractory severe aplastic anemia (SAA) or refractory cytopenias. The treatment plan would be considered unsafe if we can find this type of procedure is associated with a significantly higher treatment failure rate. Treatment failure is defined as any occurrence of the following events, overall grade III-IV acute GVHD, graft failure or death due to any cause within 100 days after transplant.
The purpose of this study is to determine the effects of the oral iron chelator Deferasirox on liver iron content after one year of treatment in patients with iron overload from repeated blood transfusions. Beta-thalassemia patients unable to be treated with deferoxamine or patients with rare chronic anemias such as Myelodysplastic Syndrome, Fanconi's Syndrome, Blackfan-Diamond Syndrome, and Pure Red Blood Cell Anemia are eligible for this study. Liver iron content will be measured by liver biopsy at the beginning of the study and after one year of treatment. However, those patients living in the San Francisco/Oakland area may have a SQUID in place of the liver biopsy if the biopsy is not medically possible for them. The SQUID is a non-invasive magnetic means to measure liver iron content.
The primary objective is to determine the feasibility of attaining acceptable rates of donor cell engraftment (\>25% donor chimerism at 180 days) following reduced intensity conditioning (RIC) regimens in pediatric patients \< 21 years receiving cord blood transplantation for non-malignant disorders.