337 Clinical Trials for Various Conditions
The purpose of this study is to assess Tacrolimus/Methotrexate/Ruxolitinib versus Post-Transplant Cyclophosphamide/Tacrolimus/Mycophenolate Mofetil in Non-Myeloablative/Reduced Intensity Conditioning Allogeneic Peripheral Blood Stem Cell Transplantation
This research is being done to investigate the safety and effectiveness of Darzalex Faspro (daratumumab and hyaluronidase-fihj) (a monoclonal antibody that targets plasma cells that make antibodies) and whether it can lower donor specific antibodies (DSA) levels to low enough levels to permit patients to proceed with allogeneic peripheral blood transplant (alloBMT). Those being asked to participate have high DSA levels that puts those being asked to participate at high risk of rejecting the available donor's blood stem cells and making those being asked to participate ineligible to receive a stem cell transplant.
The goal of this clinical trial is to determine the effectiveness of Reduced Dose Post-Transplant Cyclophosphamide (PTCy) in patients with hematologic malignancies after receiving an HLA-Mismatched Unrelated Donor (MMUD) . The main question\[s\] it aims to answer are: * Does a reduced dose of PTCy reduce the occurrence of infections in the first 100 days after transplant? * Does a reduced dose of PTCy maintain the same level of protection against Graft Versus Host Disease (GvHD) as the standard dose of PTCy?
Background: Blood cancers (such as leukemias or lymphomas) often do not respond to standard treatments. A transplant of blood stem cells from a healthy donor can help people with these cancers. Sometimes these transplants cause serious side effects, including a common immunologic problem called graft-versus-host disease. A drug called cyclophosphamide given early after the transplant (post-transplantation cyclophosphamide, PTCy) can reduce these complications. But sometimes this drug has its own negative effects. Furthermore, studies in mice suggest that an intermediate, rather than very high, dose of this drug may best protect against graft-versus-host disease. Objective: To find out if a lower dose of PTCy is more helpful for people who undergo blood stem cell transplants. Eligibility: People aged 18 and older who have a blood cancer and are eligible for a transplant of blood stem cells from another person. Healthy donors are also needed but must be related to the individual needing the transplant. Design: Participants will undergo screening. Transplant recipients will have imaging scans and tests of their heart and lung function. They will be assessed for the status of their cancer, including bone marrow taken from their pelvis and possibly also scans and/or fluid drawn from the spine depending on the disease type. Donors will be screened for general health. They will give several tubes of blood. They will give an oral swab and saliva and stool samples for research. Recipients will be in the hospital at least 4 to 6 weeks. They will have a temporary catheter inserted into a vein in the chest or neck. Medications will be given and blood will be drawn through the catheter. The transplanted stem cells will be given through the catheter. Participants will receive medications both before and after the transplant. Participants will return to the clinic at least once a week for 3 months after leaving the hospital. Follow-up visits will continue periodically for 5 years.
This clinical trial studies how well an exercise program (Totally Excited About Moving, Mobility, and Exercise \[TEAM Me\]) affects the exercise and dietary habits of pediatric and adolescents and young adults with cancer undergoing a blood stem cell transplant. TEAM Me is an exercise program that reinforces behavior, such as walking and other activities, using "tokens" (i.e. stickers) that can be redeemed for rewards. Participating in the exercise program may result in increased physical fitness, physical activity level, quality of life, and function in pediatric and adolescents and young adult patients with cancer.
Background: Sickle cell disease can often be treated with blood stem cell transplants. But for some people the disease returns. This study will give a second transplant to people whose disease has returned but still have some donor cells in their body. Objective: To cure people s sickle cell disease by giving a second treatment that makes more room in their bone marrow for donor cells. Eligibility: People ages 4 and older with sickle cell disease who had a transplant but the disease returned, and their donor relatives. Donors can be 2 years of age or older. Design: Participants will be screened with medical history, physical exam, and blood tests. Recipients will also be screened with heart and breathing tests, x-rays, a bone marrow sample, and teeth and eye exams. They must have a caregiver. Donors will have 7-8 visits. They will take a drug for 5-6 days to prepare them for the donation. For the donation, blood is taken from a vein in the arm or groin. The stem cells are collected. The rest of the blood is returned. This may be repeated. Recipients will get a long IV line in their arm or chest for about 1-2 months. They will take drugs to help their body accept the donor cells. They will get the donor cells and red blood cell transfusions through the line. They will stay in the hospital about 30 days after the transfusion of donor cells. In first 3 months after the infusion, recipients will have many visits. Then they will have visits every 6 months to 1 year for 5 years. During those visits they will repeat some of the screening tests....
This phase II trial investigates two strategies and how well they work for the reduction of graft versus host disease in patients with acute leukemia or MDS in remission. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells.
Now haplo stem cell transplant using bone marrow or peripheral blood is becoming more feasible with better regimens to prevent graft versus host disease (GVHD) like post transplant cyclophosphamide , tacrolimus, mycophenolate . Recently Bortezomib has also been shown to inhibit dendritic cells maturation and function and possesses a number of other favorable immunomodulatory effect that can prevent GVHD and help enhance immune reconstitution. this study is to assess the engraftment rate in patients with hematologic malignancies who need allogeneic stem cell transplant but do not have a suitable matched related or unrelated stem cell donor and will get T-cell replete HLA-Haploidentical allogeneic peripheral stem cell transplantation using post transplant Cyclophosphamide and bortezomib
The UCB transplant is a type of stem cell transplant used to treat cancer of the blood or lymph glands. The UCB transplant has advantages over other types of transplants such as ease of obtaining the umbilical cord blood, absence of donor risks, reduced risks of contagious infections, and the availability for immediate use. The UCB transplant is also associated with a lower incidence of graft versus host disease, or GvHD (in GvHD, the transplanted graft attacks the recipient organs).
This research study is studying the removal of a subset of white blood cells (called alpha/beta T cells) from the donor product using a cell separation device before the product is transplanted into the participant. The device used to remove the α/βT cells in this study is: -CliniMACS® TCR α/β Reagent System
The purpose of this study is to find out if an investigational treatment will allow kidney transplant recipients to better accept their new kidney and stop immunosuppressive medicines. This study is for kidney transplant recipients who receive a kidney from a sibling donor. The investigational treatment is started after kidney transplant. It begins with a regimen of a drug called rabbit anti-thymocyte globulin (rATG) combined with radiation therapy (known as total lymphoid irradiation, or TLI) to the lymph nodes and spleen. This is followed by an infusion of blood stem cells, which will be donated by the same sibling who donated their kidney. Researchers think that this treatment allows immune cells from the donor and recipient to live side by side, a condition referred to as "mixed chimerism." Mixed chimerism may help create a state of "tolerance" in kidney transplant recipients in which all immunosuppressive medications can be stopped without rejection of the transplanted kidney. This study will test whether (1) the investigational treatment will allow patients to stop immunosuppressive medications after their kidney transplant and (2) if the treatment impacts the rate of kidney rejection and the side effects of immunosuppressive medications.
The purpose of this study is to find out if removing a specific type of white blood cell (called alpha beta T-cell) that help make up the transplant donor's stem cells can improve results of blood stem cell transplant for the participant's disease.
This phase II trial studies how well 3 different drug combinations prevent graft versus host disease (GVHD) after donor stem cell transplant. Calcineurin inhibitors, such as cyclosporine and tacrolimus, may stop the activity of donor cells that can cause GVHD. Chemotherapy drugs, such as cyclophosphamide and methotrexate, may also stop the donor cells that can lead to GVHD while not affecting the cancer-fighting donor cells. Immunosuppressive therapy, such as anti-thymocyte globulin (ATG), is used to decrease the body's immune response and reduces the risk of GVHD. It is not yet known which combination of drugs: 1) ATG, methotrexate, and calcineurin inhibitor 2) cyclophosphamide and calcineurin inhibitor, or 3) methotrexate and calcineurin inhibitor may work best to prevent graft versus host disease and result in best overall outcome after donor stem cell transplant.
The goal of this study is to see if the study therapy can decrease the chemotherapy-related side effects while maximizing the effectiveness of disease control. The physicians will also be studying the effect of removing T-cells from the donor"s stem cells before transplant. T-cells are a type of white blood cell that may help cause a serious side effect of transplant called Graft versus Host Disease (GVHD). The way it removes the T-cells from the donor stem cells is actually by selecting only the stem cells (called CD34 cells) by using a device called CliniMACS. This process is called CD34 selection. The CliniMACS® device is currently under the supervision of the FDA .
This early phase I trial studies the side effects of combination chemotherapy, total body irradiation, and donor blood stem cell transplant in treating patients with primary or secondary myelofibrosis. Drugs used in chemotherapy, such as melphalan, fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil, and filgrastim work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving combination chemotherapy and total body irradiation before a donor blood stem cell transplant helps to stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
Blood stem cells can produce red blood cells (which carry oxygen), white blood cells of the immune system (which fight infections) and platelets (which help the blood clot). Patients with sickle cell disease produce abnormal red blood cells. A blood stem cell transplant from a donor is a treatment option for patients with severe sickle cell disease. The donor can be healthy or have the sickle cell trait. The blood stem cell transplant will be given to the patient as an intravenous infusion (IV). The donor blood stem cells will then make normal red blood cells - as well as other types of blood cells - in the patient. When blood cells from two people co-exist in the patient, this is called mixed chimerism. Most children are successfully treated with blood stem cells from a sibling (brother/sister) who completely shares their tissue type (full-matched donor). However, transplant is not an option for patients who (1) have serious medical problems, and/or (2) do not have a full-matched donor. Most patients will have a relative who shares half of their tissue type (e.g. parent, child, and brother/sister) and can be a donor (half-matched or haploidentical donor). Adult patients with severe sickle cell disease were successfully treated with a half-matched transplant in a clinical study. Researchers would like to make half-matched transplant an option for more patients by (1) improving transplant success and (2) reducing transplanted-related complications. This research transplant is being tested in this Pilot study for the first time. It is different from a standard transplant because: 1. Half-matched related donors will be used, and 2. A new combination of drugs (chemotherapy) that does not completely wipe out the bone marrow cells (non-myeloablative treatment) will be used to prepare the patient for transplant, and 3. Most of the donor CD4+ T cells (a type of immune cells) will be removed (depleted) before giving the blood stem cell transplant to the patient to improve transplant outcomes. It is hoped that the research transplant: 1. Will reverse sickle cell disease and improve patient quality of life, 2. Will reduce side effects and help the patient recover faster from the transplant, 3. Help the patient keep the transplant longer and 4. Reduce serious transplant-related complications.
This is an open label phase II single arm study of peripheral blood stem cell transplantation and posttransplantation cyclophosphamide, using HLA full match or haploidentical related donors, in hematological malignancies including those difficult to engraft. The objective of this study is to evaluate the safety and feasibility in nonmyeloablative, partially HLA-mismatched or HLA-matched PBSC transplant from haploidentical donors or fully matched donors with post-grafting immunosuppression that includes high-dose cyclophosphamide, tacrolimus, and Mycophenolate mofetil (MMF).
This pilot phase I trial studies the side effects of combination chemotherapy, total body irradiation, and donor blood stem cell transplant in treating patients with secondary myelofibrosis. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving combination chemotherapy and total body irradiation before a donor blood stem cell transplant helps to stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
The primary objective of this study is to compare safety and efficacy of a haploidentical T-cell depleted HSCT and adjunctive treatment with ATIR101 versus a haploidentical T cell replete HSCT with post-transplant administration of high dose cyclophosphamide (PTCy) in patients with a hematologic malignancy. An additional objective of the study is to compare the effect of the two treatments on quality of life.
This phase II trial studies how well tacrolimus, bortezomib, and anti-thymocyte globulin (thymoglobulin) work in preventing low toxicity graft versus host disease (GVHD) in patients with blood cancer who are undergoing donor stem cell transplant. Tacrolimus and anti-thymocyte globulin may reduce the risk of the recipient's body rejecting the transplant by suppressing the recipient's immune system. Giving bortezomib after the transplant may help prevent GVHD by stopping the donor's cells from attacking the recipient. Giving tacrolimus, bortezomib, and anti-thymocyte globulin may be a better way to prevent low toxicity GVHD in patients with blood cancer undergoing donor stem cell transplant.
This research study is studying a drug called obinutuzumab as a means of preventing chronic Graft vs. Host Disease (cGVHD).
Chronic granulomatous disease (CGD) affects white blood cell function. Currently, the only curative treatment is bone marrow transplant to replace the abnormal stem cells with new ones (donor cells) capable of making a normal immune system. Transplant problems include graft versus host disease (GvHD) and graft rejection. With GvHD, donor cells attack the recipient s normal tissue. Researchers want to use preparation drugs and a high cell dose to increase graft success. They want to use 2 immunosuppressive drugs (cyclophosphamide and sirolimus) to lessen the risk of GvHD. ...
This is a single arm pilot study for patients with hematologic malignancies with alternative donor sources receiving unrelated or partially matched related/Haploidentical mobilized peripheral stem cells (PSCs) using the CliniMACS system for Alpha Beta T cell depletion plus CD19+ B cell depletion to determine efficacy as determined by engraftment and GVHD, and one year leukemia free survival.
This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.
Study CR-AIR-006 is a part of the ATIR clinical development plan and will provide control data for patients treated with ATIR in clinical studies (e.g. study CR-AIR-007).
By doing this study, researchers hope to learn the following: * The safety of hyperbaric oxygen administration in the setting of the autologous transplant * The effects of hyperbaric oxygen administration on neutrophil count recovery and engraftment
The purpose of this study is to evaluate the efficacy of TXA127 to reduce the incidence (Grade II-IV) of acute Graft-vs.-Host Disease (aGVHD) in adult subjects undergoing allogeneic peripheral blood stem cell transplantation (PBSCT). The study will also evaluate the effects of TXA127 on incidence, severity and duration of mucositis; neutrophil engraftment and platelet recovery; platelet transfusion requirements; immune reconstitution; and duration of corticosteroid use. TXA127 has shown to be well tolerated by patients and appears to induce rapid production of neutrophils and platelets in the bloodstream, as well as increase the immune system components. TXA127 has also been shown reduce the severity of chemotherapy-induced mucositis.
This phase I trial studies the side effects and best dose of genetically modified T-cells following peripheral blood stem cell transplant in treating patients with recurrent or high-risk non-Hodgkin lymphoma. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. Giving an infusion of the donor's T cells (donor lymphocyte infusion) later may help the patient's immune system see any remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect)
This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy
The purpose of this study is to find out whether the addition of blood stem cells from a close family member, when added to umbilical cord blood will make the transplant safer.