Treatment Trials

1,311 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Predict Severe Traumatic Brain Injury
Description

Severe traumatic brain injury (TBI) is associated with a 20-30% mortality rate and significant disability among most survivors. The Centers for Disease Control and Prevention (CDC) estimate that 2% of the U.S. population lives with disabilities directly attributable to TBI, with annual costs exceeding $76.5 billion. Current treatments are largely ineffective because they are instituted after irreversible damage has already occurred. By the time intracranial pressure (ICP) increases or brain tissue oxygen tension (PbtO2) decreases to harmful levels, it is often too late to reverse or repair the damage. A computerized method has been developed that can predict these injurious events ahead of time, allowing clinicians to intervene before further damage occurs. The goal of this proposal is to test these predictions in real time. The first phase of the project (Year 1) involves setting up the informatics infrastructure, with no patient interaction. In the second phase (Year 2), subjects, through surrogate decision-makers, will be enrolled in an observational study where data on intracranial pressure and brain tissue oxygen tension will be collected, and the prediction algorithm will be tested for accuracy. Clinical management will follow standard care protocols, and no additional interventions will be performed. Approximately 120 individuals will participate in this study at the University of Chicago and Ben Taub General Hospital in Houston. Data collected will include both the electronic medical record and data from bedside intensive care unit monitors. The electronic medical record includes demographic information, injury characteristics, laboratory values, and imaging data, while the intensive care unit monitor provides real-time vital signs such as intracranial pressure, brain tissue oxygen tension, and mean arterial pressure. These data will be securely stored in a research computer database. Efforts will be made to contact subjects or their caretakers at 6 months to follow up on recovery. This research aims to improve patient outcomes by providing predictions of further brain injury, with the potential for future interventions to prevent permanent brain damage.

NOT_YET_RECRUITING
Assessment of Traumatic Brain Injury Using Transcranial Magnetic Stimulated Evoked Potentials
Description

Patients evaluated at Penn Presbyterian Medical Center for traumatic brain injury (TBI), who sign the informed consent, will undergo assessment of electrophysiologic potentials evoked by transcranial magnetic stimulation (TMS), using the Delphi-MD device (QuantalX Neuroscience Ltd., Saba Israel).

NOT_YET_RECRUITING
tPBM in Older Adults With Traumatic Brain Injury
Description

The purpose of this study is to evaluate the effect of transcranial photobiomodulation (tPBM) in older patients with chronic traumatic brain injury (TBI). The study aims to examine the effect of tPBM on prefrontal cerebral blood flow (CBF) and executive function (EF)

RECRUITING
Saline Versus Balanced Crystalloid in Traumatic Brain Injury
Description

The goal of this clinical trial is to determine which crystalloid (saline or balanced) should be used in the critical management of Traumatic Brain Injury (TBI) in moderate or severe TBI patients. This trial will determine whether the use of saline or balanced crystalloids is associated with improved outcomes in TBI patients. Participants will 1. be given fluids through the veins, either saline or balanced fluid will be given. 2. From the first day to the day 14 of the hospitalization (or discharge, whichever comes first), vital signs, laboratory values, treatments given, and other medical data will be collected from the medical record. 3. Six months later, your final disability, if any, will be assessed during your follow-up with a doctor. It involves answering a short survey that will take about 5 minutes or less.

NOT_YET_RECRUITING
Validating a Blood Test for the Detection of Traumatic Brain Injury in Children
Description

The primary objective of this study is to establish if Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-terminal Hydrolase L1 (UCH-L1) are predictive of computed tomography (CT) findings in pediatric traumatic brain injuries (TBI). The participant population is pediatric patients, ages 0 to less than 18 years old with a possible TBI or trauma-related injury who have blood drawn per standard of care in the emergency department. Blood samples will be analyzed using the i-STAT TBI cartridge (Abbott Laboratories, Abbott Park, IL, USA) by the Emergency Department charge nurse within one hour of collection of the blood sample. Clinical outcomes will be assessed via telephone interview with a parent at 3 and 6 months for all surviving TBI patients.

NOT_YET_RECRUITING
A Feasibility Study in Combat Athletes with Mild Traumatic Brain Injury
Description

The use of Hyberbaric Oxygen Therapy (HBOT) would be a new treatment plan rather than conventional rest. If effective, this new use technology would add to the clinical treatment among mild traumatic brain injury (mTBI) patients. The use of a point of care Glial Fibrillary Acidic Protein (GFAP) biomarker would aid in clinical decision making to create a new care plan of return to sport among unarmed combat athletes who suffer from mTBI. The innovation would be a new treatment and diagnosis strategy that will protect these athletes from serious long-term sequelae. There are no published randomized controlled studies using HBOT to treat concussed athletes within one week of injury. There are no published studies using GFAP levels to predict post concussive symptoms (PCS).

RECRUITING
Early Neuromodulation in Traumatic Brain Injury
Description

The two goals of the proposed study are: (1) To determine how brain activity changes with cognitive recovery over time from acute to chronic phases of traumatic brain injury (TBI). (2) To determine how the time of anodal transcranial electrical stimulation (A-tES) administration affects cognitive performance and brain activity in TBI. To achieve these study goals, the investigators will conduct a pilot clinical trial over three years in which the investigators aim to recruit 60 patients with moderate to severe TBI at the University of Cincinnati Medical Center (UCMC). During the acute phase of TBI, all participants will complete clinical questionnaires and perform 2 cognitive computer tasks while their brain activity is recorded. Half of the participants will be randomly selected to receive A-tES for 15 minutes while performing cognitive tasks and the other half will receive sham stimulation. All participants will be followed for 6 months. During their 3-month follow-up, the investigators will perform another session where all participants complete the questionnaires and receive A-tES while performing cognitive tasks during brain recording. In their last visit at 6 months post-injury, all participants will complete the questionnaires and cognitive tasks with brain recording but no stimulation treatment. From the collected data, the investigators will determine if time from brain injury correlates with brain activity during performance of cognitive tasks. The investigators will also assess the efficacy of early A-tES treatment for improving cognitive task performance and clinical test ratings at 6 months post-injury in comparison to A-tES delivered during the 3-month follow-up visit.

RECRUITING
Behavioral Treatment of Insomnia in Active-Duty Service Members With Traumatic Brain Injury
Description

The objective of the study is to conduct a randomized controlled trial of Cognitive Behavioral Therapy for Insomnia (CBT-I) in a sample of active-duty sailors with a history of traumatic brain injury (TBI). The investigators will test the impact of CBT-I on insomnia symptoms as well as post-concussive symptoms, psychological symptoms, and neurocognitive functioning in comparison to treatment as usual. The investigators will also compare the effectiveness of traditional in-person CBT-I and CBT-I delivered via a clinician-supervised digital health platform, Clinician Operated Assistive Sleep Technology (COAST) in comparison to treatment as usual on symptoms of insomnia, post-concussive symptoms, neurocognitive functioning, and psychological health. Participants will be assessed at baseline, post-treatment, and 3 months later.

RECRUITING
Seizure Prevention in Traumatic Brain Injury With Levetiracetam and Lacosamide
Description

The purpose of this study is to assess the incidence of early post-traumatic seizures. The study will also assess the benefit of lacosamide compared to levetiracetam in regards to agitation and behavioral adverse effects in patients with moderate to severe traumatic brain injury requiring seizure prophylaxis.

NOT_YET_RECRUITING
Using Non-invasive Brain Stimulation to Treat Word Finding Difficulty in Chronic Traumatic Brain Injury
Description

The purpose of this study is to learn more about how brain stimulation affects word finding problems in people who have a traumatic brain injury (TBI). The type of brain stimulation used is called transcranial direct current stimulation (tDCS). tDCS delivers low levels of electric current to the brain and high definition tDCS (HD-tDCS) delivers the current with multiple electrodes on the scalp. This current is delivered with HD-tDCS to parts of the brain that may help with remembering things. The investigators hope that this can help to improve word finding and memory problems in people with TBI.

RECRUITING
Treating Word Finding Difficulties in Traumatic Brain Injury With High Definition Transcranial Direct Current Stimulation
Description

The purpose of the study is to test whether low level electric stimulation, called transcranial Direct Current Stimulation (tDCS), on the part of the brain (i.e., pre-supplementary motor area) thought to aid in memory will improve verbal retrieval in civilian (non-military, non-veteran) participants with histories of traumatic brain injuries. The primary outcome measures are neuropsychological assessments of verbal retrieval, and the secondary measures are neuropsychological assessments of other cognitive abilities and electroencephalography (EEG) measures. Additionally, the study will examine the degree to which baseline assessments of cognition, concussion history, structural brain imaging, and EEG predict responses to treatment over time, both on assessments administered within the intervention period and at follow-up.

NOT_YET_RECRUITING
Cognitive Rehabilitation for Refugees and Asylum Seekers with Traumatic Brain Injury and Cognitive Impairment
Description

Researchers at Massachusetts General Hospital are looking to see if a program created to help improve thinking and memory can work for refugees and asylum seekers with traumatic brain injury (TBI). They're checking if this program is practical and if people find it helpful. The study will have two groups, and people will be assigned to a group by chance. One group will participate in the program and answer questionnaires before starting the program and then one month and three months after the end of the program. The other group will answer a questionnaire after they enroll, then one month and three months after enrollment. People in this second group will have the option to participate in the program after three months.

RECRUITING
Multimodal, Enriched Environment for Rehabilitation in Chronic Traumatic Brain Injury
Description

The goal of this study is to learn if a enhanced environment (Metro Café) with multi model approach (an approach that combines several therapies) in chronic traumatic brain injury improves outcomes of recovery better than traditional therapy. The main questions it aims to answer are: * Determine the amount of therapy dosage (speech, cognition, arm and leg movements) obtained during the Metro Café therapy session. * Evaluate the connection between environmental enrichment dosage (the Metro Café) and clinical outcome scores. Researchers will compare Metro Café Treatment to those who do not receive this treatment to see if better improvements in function after a traumatic brain injury are seen in the Metro Café Treatment Participants will train in the Metro Cafe during the 2-month gap between assessments, for a total of 18 training sessions, each up to 2 hours, 3 times per week. Participants will greet and serve customers drinks and snacks, maintain food supplies at the counters and performs housekeeping tasks with advice and assistance from a supervising researcher as needed,

ACTIVE_NOT_RECRUITING
Treatment of U.S. Veterans with Mild Traumatic Brain Injury with Hyperbaric Oxygen Therapy
Description

Mild traumatic brain (mTBI) injury affects 400,000 U.S. Veterans resulting in physical, cognitive and mental health symptoms. The Department of Defense (DoD) reported 26 suicides a day from mTBI despite ongoing care for the Veterans. The purpose of this pilot research study is to evaluate the effect of treating Veterans suffering from mTBI or persistent post-concussion syndrome with hyperbaric oxygen therapy (HBOT).

ENROLLING_BY_INVITATION
Improving In-hospital and Post-discharge Patient Education for Mild Traumatic Brain Injury
Description

The purpose of this study is to develop and validate ways to provide better patient education and clinical management for individuals who go to the emergency department (ED) with concussion or mild traumatic brain injury (mTBI).

NOT_YET_RECRUITING
NEUROBALANCE Training to Improve Postural Control in Individuals with Traumatic Brain Injury
Description

Our proposed study, \"NEUROBALANCE,\" aims to evaluate the effectiveness of a combined intervention involving robotic balance training and noninvasive brain stimulation in improving balance functions in individuals with chronic traumatic brain injury (TBI). The study will recruit 45 participants who have had a TBI for over six months and experience persistent balance deficits. Participants will be randomized into three groups: (1) robotic balance training with active brain stimulation, (2) robotic balance training with sham brain stimulation, and (3) standard-of-care rehabilitation. The study will involve 12 training sessions over four weeks, with assessments conducted at baseline, post-training, and two months post-training to evaluate balance recovery and retention. The primary focus is understanding how this intervention affects brain and muscle activity during balance tasks and how these changes translate into functional improvements in clinical outcome measures of balance function. Additionally, participant feedback on brain stimulation and exercise engagement will be collected to inform future studies. This research is particularly relevant to military service members, as TBI and balance impairments are common among this population. The findings may guide the development of personalized training protocols and contribute to broader rehabilitation strategies.

RECRUITING
Hyperbaric Oxygen Treatment for Veterans with Traumatic Brain Injury
Description

The goal of this blinded, adaptive, randomized, placebo-controlled clinical trial is to investigate the use of hyperbaric oxygen as a therapy to treat mild to moderate traumatic brain injury in Veterans and active military. The main questions it aims to answer are: * Does Hyperbaric Oxygen Therapy (HBOT) reduce neurobehavioral symptoms? (Aim 1) * How many HBOT sessions are needed to achieve a significant reduction in neurobehavioral symptoms? (Aim 2) * Does HBOT reduce posttraumatic stress disorder (PTSD) symptoms? (Aim 3) Exploratory objectives will explore if there are changes in: 1.) cognitive functioning using neuropsychological tests and the National Institutes of Health (NIH) toolbox, 2.) inflammation biomarkers in blood, 3.) microbiome in stool samples, 4.) electroencephalogram (EEG), 5.) sleep characteristics, and 6.) fMRI. Research will compare HBOT therapy to a placebo condition to see if HBOT works to treat neurobehavioral symptoms. The placebo condition is a chamber that remains unpressurized and has 21% oxygen. Participants will: 1. Complete baseline assessments to determine eligibility. 2. Attend 40 sessions of HBOT or placebo (normal air) within 12 weeks. 3. Complete questionnaires and interviews throughout the course of the study. 4. Complete a 2-week post treatment visit

RECRUITING
Acute Intermittent Hypoxia to Improve Airway Protection in Chronic Traumatic Brain Injury
Description

Acute intermittent hypoxia (AIH) involves 1-2min of breathing low oxygen air to stimulate neuroplasticity. Animal and human studies show that AIH improves motor function after neural injury, particularly when paired with task-specific training. Using a double blind cross-over study we will test whether AIH and task-specific airway protection training improves airway protection more than training alone in individuals with chronic mild-moderate traumatic brain injury (TBI).

RECRUITING
Cerebral Autoregulation, Brain Perfusion, and Neurocognitive Outcomes After Traumatic Brain Injury
Description

Cognitive impairment after moderate to severe traumatic brain injury (msTBI) not only significantly affects the quality of life in individuals with msTBI, but also increases the possibility of late-life dementia. The goal of this study is to determine whether acute (\< 1 week) cerebrovascular injury and its recovery within the first year postinjury measured by cerebral autoregulation and brain perfusion are associated with cognitive outcome at 12 months after msTBI. The results from this study will improve our understanding of cerebrovascular contributions to cognitive decline related to TBI and provide critical data to inform the development of strategies based on vascular mechanisms to improve cognition and prevent neurodegeneration after msTBI.

ACTIVE_NOT_RECRUITING
Transcutaneous Auricular Neurostimulation for ICU Patients With Traumatic Brain Injury
Description

The overarching goal of this pilot study is to assess the feasibility and safety of transcutaneous auricular neurostimulation (tan) in ICU patients with TBi and to determine the effect of tan on serum markers of inflammation. exploratory analyses will examine effects on such physiological parameters as blood pressure, heart rate, and intracranial pressure (iCP), as well as measures of neurological function.

RECRUITING
VIDAS® TBI Real Life Performance in Subjects with Mild Traumatic Brain Injury (mTBI)
Description

Decision Rules for an initial CT-scan in patients arriving to Emergency Department (ED) and presenting a mild traumatic brain injury could be optimized by the use of an objective parameter easily and rapidly measured. This may be the place for serum biomarkers providing a quick and accurate assessment. BioMérieux has now developed an automated assay for the measurement of serum Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-terminal Hydrolase (UCH-L1), the VIDAS® TBI assay to fill out this unmet needs. The goal of the herein study is to generate real-world data and evidences to support the VIDAS® TBI performances.

SUSPENDED
Ketamine for Sedation in Severe Traumatic Brain Injury
Description

This protocol is for an open-label randomized trial evaluating the safety of using ketamine in combination with propofol for sedation versus the standard of care analgosedation in patients admitted to the intensive care unit with severe traumatic brain injury.

WITHDRAWN
Personalized Approach Bias Modification in Heavy Drinking Veterans With Mild to Moderate Traumatic Brain Injury
Description

The project will examine the neural associations of alcohol approach-bias and investigate the extent to which a neuroscience-based personalized cognitive training program will remediate alcohol approach-bias and improve recovery outcomes among heavy drinking Veterans with alcohol use disorder (AUD) and a history of mild-moderate traumatic brain injury (mmTBI). Alcohol approach-bias modification (ApBM) is a cognitive training intervention designed to interrupt and modify automatic approach processes in response to alcohol cues. Modification of alcohol approach-bias and reductions in heavy alcohol use can be expected to reduce behaviors of self-harm and violence, increase adherence to medical care, reduce drinking-related medical costs, and promote healthier relationships. The long-term goal is to demonstrate the efficacy of ApBM to promote recovery from AUD in Veterans with chronic mmTBI. The investigators also aim to identify neural mechanisms associated with ApBM and other neurocognitive predictors of successful recovery. The evidence garnered from this study will be useful to inform the development of other behavioral and pharmacological treatments for Veterans with AUD with a history of mmTBI.

COMPLETED
Pilot and Feasibility of MEMI for Chronic Traumatic Brain Injury
Description

This is a pilot and feasibility study for a mobile phone-delivered intervention for memory, called MEMI (memory ecological momentary intervention), that was designed to support adults with chronic traumatic brain injury with their memory. The goal of the study is to examine the feasibility and acceptability of MEMI and to assess preliminary efficacy as to whether technology-delivered spaced memory retrieval opportunities improve memory in people with and without a history of chronic traumatic brain injury.

RECRUITING
Quetiapine to Reduce Post Concussive Syndrome After Mild Traumatic Brain Injury (mTBI)
Description

A two site, 2-arm, Phase III randomized pragmatic clinical trial evaluating the effectiveness of quetiapine monotherapy in comparison to Treatment As Usual (TAU) medication management for symptoms experienced by veterans receiving rehabilitation therapy for mild traumatic brain injury (mTBI) and comorbid symptoms of posttraumatic stress disorder (PTSD).

RECRUITING
Understanding and Treating Traumatic Brain Injury (TBI) Associated Photophobia With Botulinum Toxin Type A (BoNT-A)
Description

The purpose of this research is to understand and treat Traumatic Brain Injury (TBI) associated photophobia (light sensitivity) and its impact on visual function.

RECRUITING
Safety and Efficacy of Angiotensin (1-7) in Persons With Moderate to Severe Traumatic Brain Injury
Description

The goal of this clinical trial is to test the safety of the drug Angiotensin (1-7) and learn whether it works well as a treatment in people who have suffered a moderate to severe traumatic brain injury (TBI). The main questions this trial aims to answer are: * Is Angiotensin (1-7) safe? * Does Angiotensin (1-7) improve mental functioning and reduce physical signs of brain damage in people who have suffered a moderate to severe TBI? Participants will: * Complete 21 days of study treatment consisting of a once-daily injection. * Provide blood samples. * Undergo two magnetic resonance imaging (MRI) scans of the brain. * Complete specific tasks and questionnaires that allow researchers to evaluate the participant's brain and psychological functioning. Researchers will compare three groups: two groups that receive different doses of Angiotensin (1-7) and one group that receives a look-alike treatment with no active drug. This will allow researchers to see if the drug has any negative effects and whether it improves mental functioning and physical signs of brain damage after a TBI.

NOT_YET_RECRUITING
An Observational Exploration of Clinical Trials Targeting Traumatic Brain Injury
Description

Clinical study participation has historically been heavily biased toward specific demographics. Several people will be invited to enroll in this study so that it may collect a variety of data about traumatic brain injury clinical trial experiences and identify barriers to participation as well as the causes of participants' failure or withdrawal. People with traumatic brain injury who are invited to take part in medical research will benefit from the analysis of the data.

RECRUITING
Study to Assess the Safety of Amantadine Hydrochloride (HCl) Intravenous (IV) Solution (MR-301) in Patients With Severe Traumatic Brain Injury (TBI).
Description

The main goal of this clinical trial is to check if the treatment is safe and well-tolerated. Researchers will compare the MR-301 active drug group with the placebo group to evaluate the safety and tolerability of the drug. Other measurements include assessing the patient's overall outcome, neurological responses, time spent in the intensive care unit, time in the hospital, and mortality. Participants will receive either MR-301 BID IV dosing or a matching placebo for a total of 3 weeks.

RECRUITING
Walking After Traumatic Brain Injury in Older Adults
Description

The purpose of this research is to learn if different behavioral interventions can change walking behaviors over 12-weeks, in older adults who have previously suffered a non-penetrating mild or moderate TBI. Participants will provide information and be screened for eligibility via phone screening call (verification of age, confirmation that the participant is not currently on any medication that affects the central nervous system, and verification that the subject can participate in exercise, brief TBI history). Baseline testing will take place at the Center for Cognitive and Brain Health and Northeastern University Biomedical Imaging Center, for the baseline magnetic resonance imaging, in the interdisciplinary science and engineering complex on Northeastern University's campus. In person testing will take place over one session. The study period lasts 12 weeks, during which all participants will 1. Receive a weekly phone call with study staff and 2. Wear a wrist-worn Fit Bit tracker. A remote participation option is available for those who cannot travel to Northeastern University.