Treatment Trials

108 Clinical Trials for Various Conditions

Focus your search

NOT_YET_RECRUITING
Avoiding Radiation Therapy Due to Intracranial Response to Chemotherapy, Targeted Therapy and/or Immuno-ONcology Therapy for Brain Metastases: Pilot Pragmatic Trial
Description

This pilot pragmatic trial evaluates the feasibility of avoiding radiation therapy in patients with brain metastases who demonstrate an intracranial response to systemic therapy-including immunotherapy, targeted therapy, and/or chemotherapy. The study will prospectively enroll 45 patients, divided into two cohorts: 30 with non-small cell lung cancer (NSCLC) receiving immunotherapy, and 15 with brain metastases from other solid tumors. Eligible participants must have at least one brain metastasis not planned for radiation or surgery and must be initiating or planning to initiate a systemic therapy regimen expected to penetrate the blood-brain barrier and achieve intracranial activity. All patients will undergo a re-evaluation brain MRI 4-8 weeks after initiating systemic therapy. If lesions are stable or regressing, patients will continue surveillance without radiation. If progression is noted, standard-of-care radiation may be administered at the discretion of the treating physician. The primary objective is to assess 6-month radiation therapy-free survival (RTFS) in NSCLC patients based on PD-L1 expression status. Secondary endpoints include intracranial progression-free survival, overall survival, radiation necrosis rate, and quality of life. This study seeks to inform future trial design and identify patients who may safely avoid brain radiation.

RECRUITING
Multi-disciplinary Care for Brain Metastases
Description

This is a health services intervention study aimed at understanding the impact of intensive multi-disciplinary care compared with standard care on patient-reported symptom outcomes and prognostic awareness in patients with brain metastases.

RECRUITING
A Window of Opportunity Study of Patritumab Deruxtecan in Patients With Brain Metastases
Description

The purpose of this study is to determine if the study drug, patritumab deruxtecan (HER3-DXd), can be measured in brain tumor tissue after recieving one dose of patritumab deruxtecan before surgery.

RECRUITING
Keto-Brain:Investigating the Use of Ketogenic Diets in Brain Metastases
Description

This pilot study will be a single center, randomized controlled study of 24 participants with diagnosed BM (various primary disease sites) comparing the effect of a ketogenic (n=12) and AICR (n=12) diet. Potential participants will be identified via medical record reviews and chart reviews. Eligibility of patients will be assessed via medical record review. Randomization will be balanced by blocks of random sizes but no stratification due to the small sample size. Both groups will undergo a 16-week diet intervention where research dietitians will provide educations, recipes and grocery lists on the participants assigned diet. Each group will receive 4-7 days worth of food prior to testing days to both aid in transitioning to each dietary arm and to ensure that the metabolic needs for each arm are met. In an effort to maintain a patient centric focus and monitor changes in quality of life (QOL) all patients will complete psychosocial and behavioral inventories. These inventories aim to capture a holistic view on the proposed nutritional intervention during treatment. Primary outcomes will be determined at baseline, 8 weeks, and 16 weeks while patient-centric outcomes will be assessed every four weeks. Participants will have counseling by the attending physician for additional applicable medications for any treatment related side effects or toxicities. The intervention groups will undergo their randomized dietary regimen for 16 weeks.

ACTIVE_NOT_RECRUITING
A Phase II Study of Pre-Op SRS Followed by Surgical Resection for Brain Metastases
Description

This is a research study to determine if performing stereotactic radiosurgery (SRS) prior to surgical resection of the brain metastasis (tumor) will improve local control, in other words, increase the possibility of total removal of the primary tumor without local recurrence on longterm follow up. This research study will also determine if pre-operative SRS will lower the risk of radionecrosis that is the breakdown of body tissue at the original tumor site, and the development of leptomeningeal disease.

RECRUITING
Assess Use of 18F-Fluciclovine for Patients With Large Brain Metastases Treated With Staged Stereotactic Radiosurgery
Description

The spread of cancer to the brain is referred to as brain metastases. Brain metastases are a common complication of cancer. This study is being done to determine whether the use of a new imaging agent, 18F-fluciclovine, is able to detect which patients are responding to radiation therapy. In addition, this study will look at the changes of the treated brain metastases using this imaging agent over time.

TERMINATED
Survivorship Study of Cancer Patients Who Received Cranial Radiation Therapy
Description

This study represents a survivorship protocol that focuses on cognition and health-related quality of life (HRQoL) in cancer patients that have received prior brain irradiation. The primary purpose of this study is to assess the feasibility of using a digital symptom tracking application focused on HRQoL and cognition in cancer survivors who received brain irradiation.

TERMINATED
Neoadjuvant Immunotherapy in Brain Metastases
Description

The purpose of this phase 2 study is to assess the feasibility and efficacy of neoadjuvant immunotherapy in patients with previously untreated, surgically-resectable, solid tumor brain metastases. The primary objectives of this study are to 1) assess the feasibility of neoadjuvant ipilimumab and nivolumab treatment before surgery and stereotactic radiosurgery (SRS) in patients with solid tumor brain metastases as measured by the proportion of patients who have their surgery delayed or surgery never occurs, and 2) demonstrate that neoadjuvant immunotherapy will increase proliferation of circulating T-cells compared to baseline measurements. Exploratory objectives include describing patient progression free survival and overall survival, time to local and distant intracranial progression, and the rate of radiation necrosis. The rate of radionecrosis will also be explored, as immune expression profiles.

RECRUITING
UCSD Image-Guided Cognitive-Sparing Radiosurgery for Brain Metastases
Description

In this proposal, the investigators introduce advanced diffusion and volumetric imaging techniques along with innovative, automated image parcellation methods to identify critical brain regions, incorporate into cognitive-sparing SRS, and analyze biomarkers of radiation response. This work will advance the investigators' understanding of neurocognitive changes after brain SRS and help create interventions that preserve cognitive-function in brain metastases patients.

COMPLETED
SIMT Stereotactic Radiosurgery Outcomes Study
Description

The purpose of this study is to determine the effectiveness and efficiency of Single Isocenter Multi-target Stereotactic Radiosurgery (SIMT SRS) in patients with four or more brain metastases

RECRUITING
A Study of 68Ga-PSMA-11 PET Scans in People With Brain Tumors
Description

The purpose of this study is to find out whether 68Ga-PSMA-11 PET/CT is effective in assessing tumor uptake (tumor activity seen in cancerous tissue) in participants with high-grade glioma/HGG or brain metastases.

RECRUITING
18F-Fluciclovine PET Amino Acid Evaluation of Brain Metastasis Treated With Stereotactic Radiosurgery
Description

This is a pilot imaging study in participants treated with stereotactic radiosurgery (SRS) to treat brain metastasis. The purpose of this study is to see whether 18F-Fluciclovine positron emission tomography (PET) can be used as a biomarker to measure response or progression of brain metastasis after SRS.

RECRUITING
Safety and Efficacy of NEO212 in Patients with Astrocytoma IDH-mutant, Glioblastoma IDH-wildtype or Brain Metastasis
Description

This multi-site, Phase 1/2 clinical trial is an open-label study to identify the safety, pharmacokinetics, and efficacy of a repeated dose regimen of NEO212 alone for the treatment of patients with radiographically-confirmed progression of Astrocytoma IDH- mutant, Glioblastoma IDH-wildtype, and the safety, pharmacokinetics and efficacy of a repeated dose regimen of NEO212 when given with select SOC for the treatment of solid tumor patients with radiographically confirmed uncontrolled metastases to the brain. The study will have three phases, Phase 1, Phase 2a and Phase 2b.

RECRUITING
Effect of Azeliragon Combined With Stereotactic Radiation Therapy in Patients With Brain Metastases
Description

To determine the safety and efficacy of using the drug azeliragon combined with stereotactic radiosurgery. Specifically, to determine if this combination will lead to improved response in the brain (tumor shrinking in size) and overall tumor control (how long tumor remains controlled).

RECRUITING
Comparing Single vs Multiple Dose Radiation for Cancer Patients With Brain Metastasis and Receiving Immunotherapy
Description

This study is designed to see if we can lower the chance of side effects from radiation in patients with breast, kidney, small cell lung cancer, non-small cell lung cancer or melanoma that has spread to the brain and who are also being treated with immunotherapy, specifically immune checkpoint inhibitor (ICI) therapy. This study will compare the usual care treatment of single fraction stereotactic radiosurgery (SSRS) given on one day versus fractionated stereotactic radiosurgery (FSRS), which is a lower dose of radiation given over a few days to determine if FSRS is better or worse at reducing side effects than usual care treatment.

RECRUITING
Developing a New MRI Technique to Understand Changes in Brain Tumors After Treatment
Description

The purpose of this study is to develop and test a new magnetic resonance imaging (MRI) technique to see if it can be used to tell the difference between tumor growth from worsening of cancer and growth from the effects of treatment in participants who have brain tumors treated with radiation therapy called stereotactic radiosurgery (SRS).

RECRUITING
Circulating Biomarkers Repository in Adults Diagnosed With Primary and Metastatic Brain Tumors
Description

The purpose of this protocol is to create a repository of blood samples from patients diagnosed with primary and metastatic brain tumors who are being seen in the Department of Radiation Oncology at Duke Cancer Center.

RECRUITING
A Study of Stereotactic Radiosurgery (SRS) for People With Lung Cancer That Has Spread to the Brain
Description

The purpose of the study is to see if stereotactic radiosurgery/SRS is an effective treatment for people with a new diagnosis of brain metastases from small cell lung cancer/SCLC.

COMPLETED
Managing Distress in Malignant Brain Cancer
Description

To identify potential adaptations of the managing cancer and living meaningfully (CALM) intervention that will be required for service members, Veterans, their beneficiaries, and civilian cancer metastasis to the brain (bMET) populations.

RECRUITING
Study of Stereotactic Radiosurgery With Olaparib Followed by Durvalumab and Physician's Choice Systemic Therapy in Subjects With Breast Cancer Brain Metastases
Description

This study is a Phase I/II study evaluating the safety and effectiveness of focused radiation therapy (radiosurgery) together with olaparib, followed by immunotherapy, for patients with brain metastases from triple negative or BRCA-mutated breast cancers. This study will have a Phase I portion in which subjects will be enrolled based on 3+3 dose escalation rules. Three dose levels of olaparib will be studied. Cycle 1 of study treatment will consist of Olaparib given twice daily concurrently with stereotactic radiosurgery (SRS). Olaparib will start one week prior to SRS and continue during and following SRS (1-5 fractions) for up to 28 days total. The number of doses of Olaparib will be dependent on how long it takes a subject to recover from SRS (ideally the subject will be off steroids, if they are required, at the start of Cycle 2, with exceptions outlined later in this section). Once the subject has recovered from SRS (based on investigator discretion) that will be considered the DLT period. Cycle 2 will be initiated with physician's choice systemic therapy and durvalumab. Cycle 2+ will equal 21 days. During Cycles 2 and 3, physician's choice systemic monotherapy will be given along with durvalumab per protocol. Each cycle will last 21 days. Imaging to evaluate intracranial and extracranial disease will be performed after Cycle 3, and subjects with response will continue with the systemic therapy and durvalumab until progression (intracranial or extracranial), unacceptable toxicity or death.

COMPLETED
Safety Study of Pritumumab in Brain Cancer
Description

Pritumumab is a human IgG1 kappa antibody that binds to a malignant tumor associated antigen, ecto domain-vimentin (EDV) which is expressed in a variety of tumor cells. Pritumumab was shown to have relatively high reactivity with brain cancer cell lines, while no reactivity was demonstrated with normal neurons, astrocytes or fetal cerebral cells. Pritumumab has notable antibody-dependent cellular cytotoxicity (ADCC), brain tumor penetration and antitumor activity in nude mouse human xenograft models. Primary Objectives - To determine the safety and/or tolerability and the recommended Phase 2 dose (RP2D) of escalating, intravenously (IV) administered Pritumumab doses in patients with recurrent gliomas or with brain metastases. Secondary Objectives * To determine pharmacokinetics and pharmacodynamics of Pritumumab * To identify preliminary signals of anti-tumor response to Pritumumab * To explore disease-related, patient-reported outcomes

TERMINATED
LITT and Pembrolizumab in Recurrent Brain Metastasis
Description

This is an open-label, historically controlled pilot study investigating the immune effect of Laser Interstitial ThermotHerapy (LITT)+ pembrolizumab in adult patients with a primary cancer approved by the FDA for treatment with an immune-checkpoint inhibitor who have recurrent brain metastasis after prior stereotactic radiosurgery (SRS).

COMPLETED
Exploring Compensation to Maintain Cognitive Function in Adults Newly Diagnosed With Brain Cancer
Description

Recent research indicates that variability in cognitive function for brain tumor survivors may be explained by differences in cognitive reserve (CR) and use of compensatory strategies.However, it is unknown when cognitive function declines or survivors tap into compensation. This longitudinal mixed methods study proposes to explore differences in cognitive function and change over time in newly diagnosed adults with brain cancer prior to, immediately after (within 2 weeks), and 2-3 months after radiation therapy treatment has been completed. Specific aims are to: Aim1: Examine the relationship between objective and subjective cognitive function in subjects newly diagnosed with brain cancer prior to and after XRT. Aim 2: Explore the interrelationship between cognitive function and compensation (neural and behavioral) by high/low CR prior to and after XRT. Aim 3: Describe the trajectory of objective and subjective cognitive function over time by CR, cancer type, and associated treatment-related factors.

COMPLETED
Cytochlor, Tetrahydrouridine, and External-Beam Radiation Therapy in Treating Patients With Cancer That Has Spread to the Brain
Description

RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs, such as cytochlor and tetrahydrouridine, may make tumor cells more sensitive to radiation therapy. PURPOSE: This phase I trial is studying the side effects and best dose of cytochlor when given together with tetrahydrouridine and external-beam radiation therapy in treating patients with cancer that has spread to the brain.

TERMINATED
Ph I Study of Lithium During Whole Brain Radiotherapy For Patients With Brain Metastases
Description

RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs, such as lithium, may protect normal cells from the side effects of radiation therapy. Giving lithium together with radiation therapy may allow a higher dose of radiation therapy to be given so that more tumor cells are killed. PURPOSE: This phase I trial is studying the side effects and best dose of lithium when given together with whole-brain radiation therapy in treating patients with brain metastases from primary cancer outside the brain.

COMPLETED
Irinotecan and Whole-Brain Radiation Therapy in Treating Patients With Brain Metastases From Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Irinotecan may make tumor cells more sensitive to radiation therapy. Giving irinotecan together with whole-brain radiation therapy may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of irinotecan when given together with whole-brain radiation therapy and to see how well they work in treating patients with brain metastases from solid tumors. (The study of side effects and best dose has ended as of 4/15/05)

COMPLETED
Phase II Studies Of Donepezil And Ginkgo Biloba In Irradiated Brain Tumor
Description

RATIONALE: Donepezil and EGb761 may be effective in improving neurocognitive function (such as thinking, attention, concentration, and memory) and may improve quality of life in patients who have undergone radiation therapy to the brain. PURPOSE: This phase II trial is studying how well donepezil or EGb761 works in improving neurocognitive function in patients who have undergone radiation therapy for primary brain tumor or brain metastases.

COMPLETED
Radiation Therapy Plus Thalidomide and Temozolomide in Treating Patients With Newly Diagnosed Brain Metastases
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Thalidomide may stop the growth of cancer by stopping blood flow to the tumor. Combining whole-brain radiation therapy with thalidomide and temozolomide may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining whole-brain radiation therapy with thalidomide and temozolomide in treating patients who have newly diagnosed brain metastases.

TERMINATED
Methylphenidate to Improve Quality of Life in Patients Undergoing Radiation Therapy for Brain Tumors
Description

RATIONALE: Methylphenidate may decrease side effects of radiation therapy. It is not yet known if methylphenidate is effective in improving quality of life in patients with primary or metastatic brain tumors. PURPOSE: Randomized phase III trial to determine the effectiveness of methylphenidate in improving quality of life in patients who have brain tumors and are undergoing radiation therapy.

COMPLETED
Temozolomide in Treating Patients With Brain Metastases
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of temozolomide in treating patients who have brain metastases.