Treatment Trials

489 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
A Study of Cognitive Changes in Patients Receiving Brain Radiation
Description

Cranial radiation therapy (RT), commonly used to treat benign and malignant brain tumors, can lead to cognitive impairments in domains not related to neuroanatomic structures directly impacted by the tumor. The study will prospectively enroll 75 patients with benign and low-grade brain tumors who will undergo partial brain RT, with either conventionally fractionated or hypofractionated schedules. Subjects will receive MRI scans at baseline, 6 months, and 12 months. Given the role of the limbic system in key cognitive functions affected by RT, researchers have a particular interest in characterizing MRI changes in the limbic system and thalamus in relation to memory and related processes. Specific Aims: 1. To examine objective neurocognitive changes over time. The investigators hypothesize that they will see RT-induced neurocognitive impairment in up to 50% of patients after cranial RT. 2. To examine changes in brain tissue (via MRI) induced by off-target RT in patients with benign and low-grade brain tumors. The investigators specifically hypothesize that comapping of RT dose and MRI changes in the thalamus and limbic system (i.e., thalamic nuclei, hippocampus, fornix, hypothalamus/mammillary bodies, limbic lobe, cingulum) will be most distorted by off-target RT. 3. To examine the relationship between MRI changes for key neuroanatomic structures identified in Aim 1 with objective neurocognitive testing. The investigators hypothesize that cognitive decline will be correlated with damage revealed by MRI to limbic and thalamic structures. This research will help to define which neuroanatomic structures are most at risk from RT-induced damage and will help ultimately establish new dose constraint guidelines for important structures to improve cognitive outcomes.

ACTIVE_NOT_RECRUITING
Novel Gamma-Delta (γδ)T Cell Therapy for Treatment of Patients With Newly Diagnosed Glioblastoma
Description

This study is being conducted to find out if the safety and tolerability of an experimental cell therapy is safe to administer to patients with a newly diagnosed glioblastoma multiforme (GBM) in combination with temozolomide (TMZ).

RECRUITING
Safety and Feasibility of Preoperative and Intraoperative Image-Guided Resection of Gliomas
Description

This study evaluates the use of specialized magnetic resonance imaging (MRI) techniques including magnetic resonance (MR) perfusion and 2-hydroxyglutarate (2HG) spectroscopy in the surgical treatment of gliomas. Cohort 1 participants will undergo an MR perfusion scan or 2-HG spectroscopy prior to surgery and intra-operatively. Cohort 2 participants will only undergo standard of care imaging and tumor acquisition. Participant participation will end at the completion of surgery and will be transitioned to standard of care follow-up.

RECRUITING
Metabolic Characteristics of Brain Tumors Using Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging (MRSI)
Description

This is a non-randomized, purely observational, feasibility study to detect metabolic changes in patients with brain malignancy using a novel hyperpolarized \[1-13C\]pyruvate MRSI.

RECRUITING
Stereotactic Radiosurgery (SRS) Dose-Escalation Study for Brain Metastasis
Description

SRS dose escalation for brain metastases in radiation-naïve patients will establish true tolerable doses, which may exceed the current standard doses. This may lead to an improvement in local control, patient survival, and/or quality-of life.

COMPLETED
Hippocampal-Avoiding Whole Brain Irradiation With Simultaneous Integrated Boost for Treatment of Brain Metastases
Description

The investigators hypothesize that avoidance of the hippocampal region with WBRT (Whole-Brain Radiotherapy ) may delay or reduce the onset, frequency, and/or severity of NCF (neurocognitive function) decline, as measured with clinical neurocognitive tools.

ENROLLING_BY_INVITATION
Neuronal and Network Mechanisms of Electrocortical Stimulation
Description

Electrocortical stimulation (ECS) mapping is a procedure used during brain surgeries, for example when treating diseases like epilepsy or when removing brain tumors. ECS mapping helps surgeons locate areas of the cerebral cortex (the outer part of the brain) that are important for everyday tasks like movement and speech. ECS mapping has been used for decades, and is considered the "gold-standard" tool for locating important areas of cortex. Despite this long history, there is still no clear understanding of exactly how ECS works. The goal of this study is to learn details about the effects ECS has on the brain. The main questions the study aims to answer are: 1) how ECS affects the neurons of the cortex at the stimulation site; and 2) how ECS impacts brain regions that are critically important for human speech and language. These so-called "critical sites" can be physically distant from one another on the brain's surface, requiring extensive ECS mapping and long surgeries. Critical sites are thought to be part of a speech/language network of brain areas, and so the study's goal is to learn about how they are connected. In some participants, the brain's surface will also be slightly cooled. This is a painless procedure that does not harm the brain's function, but could provide insight as to which parts of the brain (the surface, or deeper parts) are responsible for the effects of ECS. By improving the understanding of how ECS affects the brain and improving the ability to identify critical sites, this study could potentially lead to shorter surgeries and better outcomes for future individuals who need this care. Participants will be recruited from among individuals who are undergoing brain surgery for epilepsy treatment or tumor removal. Participants will complete simple tasks like reading words or naming pictures, similar to standard testing that is already performed during their hospital stay.

RECRUITING
A Study Comparing Niraparib With Temozolomide in Adult Participants With Newly-diagnosed, MGMT Unmethylated Glioblastoma
Description

The goal of this Phase 3 clinical trial is to compare the efficacy of niraparib versus temozolomide (TMZ) in adult participants with newly-diagnosed, MGMT unmethylated glioblastoma multiforme (GBM). The main questions it aims to answer are: Does niraparib improve progression-free survival (PFS) compared to TMZ? Does niraparib improve overall survival (OS) compared to TMZ? Participants will be randomly assigned to one of two treatment arms: niraparib or TMZ. * study drug (Niraparib) or * comparator drug (Temozolomide - which is the standard approved treatment for MGMT unmethylated glioblastoma). The study medication will be taken daily while receiving standard of care radiation therapy (RT) for 6-7 weeks. Participants may continue to take the niraparib or TMZ adjuvantly as long as the cancer does not get worse or completion of 6 cycles of treatment (TMZ). A total of 450 participants will be enrolled in the study. Participants' tasks will include: * Complete study visits as scheduled * Complete a diary to record study medication

RECRUITING
The RECMAP-study: Resection With or Without Intraoperative Mapping for Recurrent Glioblastoma
Description

Resection of glioblastoma in or near functional brain tissue is challenging because of the proximity of important structures to the tumor site. To pursue maximal resection in a safe manner, mapping methods have been developed to test for motor and language function during the operation. Previous evidence suggests that these techniques are beneficial for maximum safe resection in newly diagnosed grade 2-4 astrocytoma, grade 2-3 oligodendroglioma, and recently, glioblastoma. However, their effects in recurrent glioblastoma are still poorly understood. The aim of this study, therefore, is to compare the effects of awake mapping and asleep mapping with no mapping in resections for recurrent glioblastoma. This study is an international, multicenter, prospective 3-arm cohort study of observational nature. Recurrent glioblastoma patients will be operated with mapping or no mapping techniques with a 1:1 ratio. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months after surgery and 2) residual tumor volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: 1) overall survival (OS), 2) progression-free survival (PFS), 4) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).

RECRUITING
The SUPRAMAX Study: Supramaximal Resection Versus Maximal Resection for High-Grade Glioma Patients (ENCRAM 2201)
Description

A greater extent of resection of the contrast-enhancing (CE) tumor part has been associated with improved outcomes in high-grade glioma patients. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in HGG patients in terms of survival, functional, neurological, cognitive, and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be operated with supramaximal resection or maximal resection at a 1:3 ratio. Primary endpoints are: 1) overall survival and 2) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months postoperatively. Secondary endpoints are 1) residual CE and NCE tumor volume on postoperative T1-contrast and FLAIR MRI scans 2) progression-free survival; 3) onco-functional outcome, and 4) quality of life at 6 weeks, 3 months, and 6 months postoperatively. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).

COMPLETED
Magrolimab in Children and Adults With Recurrent or Progressive Malignant Brain Tumors
Description

Children and adults with recurrent or progressive malignant brain tumors have a dismal prognosis, and outcomes remain very poor. Magrolimab is a first-in-class anticancer therapeutic agent targeting the Cluster of differentiation 47 (CD47)-signal receptor protein-alpha (SIRP-alpha) axis. Binding of magrolimab to human CD47 on target malignant cells blocks the "don't eat me" signal to macrophages and enhances tumor cell phagocytosis. Pre-clinical studies have shown that treatment with magrolimab leads to prolonged survival in models of Atypical Teratoid Rhabdoid Tumors (ATRT), diffuse intrinsic pontine glioma (DIPG), high-grade glioma (adult and pediatric), medulloblastoma, and embryonal tumors formerly called Primitive Neuro-Ectodermal Tumors (PNET). Safety studies in humans have proven that magrolimab has an excellent safety profile. Ongoing studies are currently testing magrolimab in adult myelodysplastic syndromes, acute myeloid leukemia, non-Hodgkin lymphoma, colorectal, ovarian, and bladder cancers. Herein we propose to test the safety of magrolimab in children and adults with recurrent or progressive malignant brain tumors.

WITHDRAWN
Multimodality MRI and Liquid Biopsy in GBM
Description

Patients with a new diagnosis of high-grade glioma based on MRI, who are considered surgical candidates determined by neurosurgeons or patients with recurrent glioblastoma with the initial diagnosis of glioblastoma (histologic or molecular proof) and recommended for clinically surgical resection may be eligible for this study. Subjects may participate in this study if they are at least 18 years of age. Ferumoxytol-enhanced MRI will be used to quantify tumor-associated macrophages. This is a non-therapeutic trial in that imaging will not be used to direct treatment decisions. The blood draw is being completed to evaluate cell-free circulating tumor DNA (cfDNA) and cell-free tumor DNA (ctDNA).

COMPLETED
Handheld Dynamometer During Awake Craniotomy Pilot
Description

The primary purpose of this study is to assess the feasibility, safety and reliability of the use of handheld dynamometry in evaluating intraoperative motor function for patients undergoing awake craniotomy for the resection of brain lesions located within or adjacent to the motor cortex.

COMPLETED
Optimizing BCI-FIT: Brain Computer Interface - Functional Implementation Toolkit
Description

This project adds to non-invasive BCIs for communication for adults with severe speech and physical impairments due to neurodegenerative diseases. Researchers will optimize \& adapt BCI signal acquisition, signal processing, natural language processing, \& clinical implementation. BCI-FIT relies on active inference and transfer learning to customize a completely adaptive intent estimation classifier to each user's multi-modality signals simultaneously. 3 specific aims are: 1. develop \& evaluate methods for on-line \& robust adaptation of multi-modal signal models to infer user intent; 2. develop \& evaluate methods for efficient user intent inference through active querying, and 3. integrate partner \& environment-supported language interaction \& letter/word supplementation as input modality. The same 4 dependent variables are measured in each SA: typing speed, typing accuracy, information transfer rate (ITR), \& user experience (UX) feedback. Four alternating-treatments single case experimental research designs will test hypotheses about optimizing user performance and technology performance for each aim.Tasks include copy-spelling with BCI-FIT to explore the effects of multi-modal access method configurations (SA1.3a), adaptive signal modeling (SA1.3b), \& active querying (SA2.2), and story retell to examine the effects of language model enhancements. Five people with SSPI will be recruited for each study. Control participants will be recruited for experiments in SA2.2 and SA3.4. Study hypotheses are: (SA1.3a) A customized BCI-FIT configuration based on multi-modal input will improve typing accuracy on a copy-spelling task compared to the standard P300 matrix speller. (SA1.3b) Adaptive signal modeling will allow people with SSPI to typing accurately during a copy-spelling task with BCI-FIT without training a new model before each use. (SA2.2) Either of two methods of adaptive querying will improve BCI-FIT typing accuracy for users with mediocre AUC scores. (SA3.4) Language model enhancements, including a combination of partner and environmental input and word completion during typing, will improve typing performance with BCI-FIT, as measured by ITR during a story-retell task. Optimized recommendations for a multi-modal BCI for each end user will be established, based on an innovative combination of clinical expertise, user feedback, customized multi-modal sensor fusion, and reinforcement learning.

RECRUITING
Registry of Patients With Brain Tumors Treated With STaRT (GammaTiles)
Description

The objectives of this registry study are to evaluate real-world clinical outcomes and patient reported outcomes that measure the effectiveness and safety of STaRT.

RECRUITING
Oral Capecitabine and Temozolomide (CAPTEM) for Newly Diagnosed GBM
Description

The purpose of this study is to evaluate the safety and efficacy of administering the medication capecitabine along with temozolomide when you start your monthly regimen of oral temozolomide for the treatment of your newly diagnosed glioblastoma multiforme (GBM). Capecitabine is an oral chemotherapy that is given to patients with other types of cancer. The study will evaluate whether the dosage of 1500 mg/m2 of capecitabine is tolerable after radiation, when taken along with temozolomide. It will also try to determine if the medication capecitabine helps patients respond to treatment for a longer period of time compared to just temozolomide alone, which is the standard of care.

COMPLETED
A Case-Referent Study of Brain Tumors in Adults
Description

The etiology of brain tumors is poorly understood. Due, in part, to public concern about a postulated relationship between the use of cellular telephones or other increasingly prevalent environmental exposures and the incidence of brain cancer in adults, the National Cancer Institute is collaborating with three U.S. hospitals in a comprehensive case-control study of malignant and benign brain tumors. Factors under consideration include use of cellular phones and other wireless communication devices, workplace exposures to chemical agents and electromagnetic fields, dietary factors, family history of tumors, genetic determinants of susceptibility, home appliance use, reproductive history and hormonal exposures, viruses, medical and dental exposure to ionizing radiation, and other aspects of medical history. Approximately 800 newly diagnosed brain tumor cases and 800 controls have been enrolled at hospitals in Boston, Phoenix and Pittsburgh. Cases include all adults (age greater than or equal to 18 years) newly diagnosed with a histologically confirmed intracranial glioma, intracranial meningioma or acoustic neuroma. Controls are patients admitted to the same hospitals as the cases, and treated for any of a variety of non-malignant conditions. Participating cases and controls were interviewed in the hospital by a research nurse and asked to complete a self-administered questionnaire and donate a sample of blood. Key features of the study include its large size, the emphasis on rapid ascertainment of incident cases and interview of study subjects rather than surrogate respondents, the use of detailed, job-specific questions developed by industrial hygienists to ascertain occupational exposures, and the storage of blood samples for future evaluation of inherited susceptibility, biomarkers of exposure and gene-environment interactions. Implementation of the study protocol proceeded without serious problems. There have been no harmful effects on study participants. There have been no complaints from participants or breaches of confidentiality. Continuation of this research involves analysis and reporting of results. As there will be many papers, this process is expected to extend over the next several years.

Conditions
WITHDRAWN
18F-Fluciclovine PET and Multiparametric MR Imaging
Description

The purpose of the study is to investigate the use of the investigational agent Axumin (fluciclovine-F18) with PET/CT imaging in combination with standard MR imaging to detect remaining or recurrent brain tumor.

RECRUITING
Virtual Home-based Exercise Intervention (RISE) to Improve Cancer-Related Cognitive Impairment and Gut Microbiome in Adolescent and Young Adult Brain Tumor Survivors
Description

This clinical trial evaluates the impact of a research intervention of virtually supervised exercise program (RISE) on cancer-related cognitive impairment (CRCI), physical activity in adolescent and young adult (AYA) brain tumor survivors. This clinical trial also evaluates the impact of RISE on the collection of microorganisms that exist in the intestines (gut microbiome). Up to 45% of AYA brain tumor survivors experience CRCI, including issues with attention and memory. CRCI can have a negative impact on education, independent living and can worsen long-term quality of life. Moderate-intensity levels of exercise, particularly aerobic and resistance training, have been shown to improve cognitive function. Additionally, exercise can change the composition and function of the gut microbiome, which may lead to improved cognitive function. Unfortunately, only about 50% of AYAs with cancer receive exercise information or meet the physical activity recommendations. Tailoring a virtually delivered exercise intervention to meet the unique needs of AYAs may improve access to exercise. Participating in the virtual home-based exercise intervention, RISE, may improve physical activity and cognitive impairment in AYA brain tumor survivors and may also help researchers understand the relationship of exercise on the gut microbiome and cognitive function.

COMPLETED
Promotion of Well-being of Young Adult Brain Cancer Survivors
Description

The purpose of this study is to evaluate the effectiveness of an Internet-based, behavioral activation intervention to promote well-being in a young adult survivors of childhood brain tumor.

ACTIVE_NOT_RECRUITING
Metabolomic and Epigenetic Profiling of Bodyfluids From Lung and Brain Cancer Receiving Radiation Therapy
Description

This research trial studies metabolomic and other molecular profiling to identify predictive biomarkers for radiation toxicity and survival in patients with lung or brain cancers receiving radiation therapy. Studying samples of blood, urine, and tissue from patients with lung or brain cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer and predict which patients are at higher risk for developing radiation side effects and how well patients will respond to radiation treatment.

COMPLETED
Light Sedation or Intubated General Anesthesia in Patients With Brain Cancer Undergoing Craniotomy
Description

This randomized clinical trial studies light sedation compared with intubated general anesthesia (a loss of feeling and a complete loss of awareness that feels like a very deep sleep) in reducing complications and length of hospital stay in patients with brain cancer undergoing craniotomy. Craniotomy is an operation in which a piece of the skull is removed so doctors can remove a brain tumor or abnormal brain tissue. Light sedation allows patients to remain awake during their surgery, while intubated general anesthesia puts patients to sleep. Surgery complication rates may be reduced if intubated general anesthesia is avoided. Additionally, patients not receiving intubated general anesthesia tend to recover more quickly after surgery. It is not yet known whether light sedation is better at reducing complications and length of hospital stay compared to intubated general anesthesia.

COMPLETED
Proton Beam Radiation Therapy in Treating Patients With Low Grade Gliomas
Description

RATIONALE: Specialized radiation therapy, such as proton beam radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. PURPOSE: This phase I/II trial is studying the best way to give proton beam radiation therapy and to see how well it works in treating patients with low grade gliomas.

TERMINATED
Erlotinib in Treating Patients With Recurrent Glioblastoma Multiforme or Gliosarcoma
Description

RATIONALE: Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase II trial is studying how well erlotinib works in treating patients with recurrent glioblastoma multiforme or gliosarcoma.

COMPLETED
Tandutinib in Treating Patients With Recurrent or Progressive Glioblastoma
Description

This phase I/II trial is studying the side effects and best dose of tandutinib and to see how well it works in treating patients with recurrent or progressive glioblastoma.Tandutinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

COMPLETED
Gliadel Wafer and O6-Benzylguanine in Treating Patients With Recurrent Glioblastoma Multiforme
Description

RATIONALE: Drugs used in chemotherapy, such as Gliadel wafer and O6-benzylguanine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving Gliadel wafer together with O6-benzylguanine works in treating patients with recurrent glioblastoma multiforme.

COMPLETED
Antineoplaston Therapy in Treating Adult Patients With Anaplastic Astrocytoma
Description

RATIONALE: Current therapies for adults with anaplastic astrocytoma provide limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of adults with anaplastic astrocytoma. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on adults with anaplastic astrocytoma.

TERMINATED
Gadobutrol Versus Gadopentetate Dimeglumine or Gadobenate Dimeglumine Before DCE-MRI in Diagnosing Patients With Multiple Sclerosis, Grade II-IV Glioma, or Brain Metastases
Description

This pilot clinical trial compares gadobutrol with standard of care contrast agents, gadopentetate dimeglumine or gadobenate dimeglumine, before dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain. Gadobutrol is a type of contrast agent that may increase DCE-MRI sensitivity for the detection of tumors or other diseases of the central nervous system. It is not yet known whether gadobutrol is more effective than standard of care contrast agents before DCE-MRI in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain.

WITHDRAWN
NovoTTF-100A With Bevacizumab and Carmustine in Treating Patients With Glioblastoma Multiforme in First Relapse
Description

This phase II trial studies the safety of NovoTTF-100A in combination with bevacizumab and carmustine and to see how well they work in treating patients with glioblastoma multiforme that has returned for the first time. NovoTTF-100A, a type of electric field therapy, delivers low intensity, alternating "wave-like" electric fields that may interfere with multiplication of the glioblastoma multiforme cells. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as carmustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving NovoTTF-100A together with bevacizumab and carmustine may be an effective treatment for glioblastoma multiforme.

WITHDRAWN
Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors
Description

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

Conditions
Acoustic SchwannomaAdult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Choroid Plexus TumorAdult CraniopharyngiomaAdult Diffuse AstrocytomaAdult EpendymoblastomaAdult EpendymomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Grade I MeningiomaAdult Grade II MeningiomaAdult MedulloblastomaAdult Meningeal HemangiopericytomaAdult Mixed GliomaAdult Myxopapillary EpendymomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult PineoblastomaAdult PineocytomaAdult Subependymal Giant Cell AstrocytomaAdult SubependymomaAdult Supratentorial Primitive Neuroectodermal Tumor (PNET)Childhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Infratentorial EpendymomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaChildhood MedulloepitheliomaChildhood Supratentorial EpendymomaMeningeal MelanocytomaNewly Diagnosed Childhood EpendymomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood MedulloblastomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilocytic AstrocytomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood PineoblastomaRecurrent Childhood Pleomorphic XanthoastrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood MedulloblastomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilocytic AstrocytomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood PineoblastomaUntreated Childhood Pleomorphic XanthoastrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Supratentorial Primitive Neuroectodermal TumorUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma