39 Clinical Trials for Various Conditions
A Phase I Pharmacologic Study of CYC140, a polo-like kinase 1 inhibitor, in Patients with Advanced Leukemias or Myelodysplastic Syndromes
A multi-center, open-label, randomized, phase Ib study to evaluate the pharmacokinetics (PK) of HQP1351 and to determine the recommended phase 2 dose (RP2D) of HQP1351 in subjects with CML chronic phase (CP), accelerated phase (AP), or blast phase (BP) or with Ph+ ALL, who have experienced resistance or intolerance to at least two tyrosine kinase inhibitors (TKIs) or in subjects with Ph+ B-cell precursor (BCP) ALL or lymphoid blast phase CML (CML LBP), who have experienced resistance or intolerance to at least one second or later generation TKI.
The purpose of this study is to investigate whether the addition of a vaccine after participants reduced intensity transplant will be safe and beneficial. The vaccine used in this trial, called GVAX, will be made from the participants own leukemia cells, and will be given between 1-4 months after transplant. In recent years, researchers have discovered that GVAX vaccine made from the patient's own cancer calls that have been engineered in the laboratory to produce a protein called GM-CSF, can be effective in stimulating a powerful immune response specific to that cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Thalidomide may stop the growth of cancer cells by stopping blood flow to the tumor. Combining chemotherapy with thalidomide may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combining fludarabine, carboplatin, and topotecan with thalidomide in treating patients who have relapsed or refractory acute myeloid leukemia, chronic myelogenous leukemia, or advanced myelodysplastic syndromes.
The goal of this clinical research study is to find the highest safe dose of RAD001 that can be given as a treatment for leukemia, mantle cell lymphoma, or myelofibrosis. Another goal is to learn how effective the dose that is found is as a treatment.
This is a Phase I study designed to determine the MTD and assess the toxicity associated with clofarabine followed by fractionated cyclophosphamide in patients \> 1 year of age or \< 21 years of age with relapsed or refractory acute leukemias. There will be 25 to 35 patients enrolled. Cohorts of 3 to 6 patients each will receive escalated doses of clofarabine followed by fractionated cyclophosphamide until the MTD is reached. There will be no intra-patient dose escalation. Single-agent cyclophosphamide will be administered by 2-hour IVI on Day 0 of cycle 1. On Days 1, 2, and 3 and Days 8, 9, and 10 clofarabine will be administered by IVI 2 hours before each dose of cyclophosphamide (see the treatment schema below). A cycle is defined as 28 days.
The study is a Phase II clinical trial. Patients will receive intensity-modulated total marrow irradiation (TMI) at a dose of 9 Gray (Gy) with standard myeloablative fludarabine intravenous (IV) and targeted busulfan (FluBu4) conditioning prior to allogeneic hematopoietic stem cell transplant (HSCT). Graft-versus-host disease (GVHD) prophylaxis will include Cyclophosphamide on Day +3 and +4, tacrolimus, and mycophenolate mofetil.
The purpose of Phase I of this study is to test the safety and tolerability of the investigational drug, OTS167, and that of Phase II of this study is to confirm the potential response benefit of OTS167. OTS167 is a maternal embryonic leucine zipper kinase (MELK) inhibitor which demonstrated antitumor properties in laboratory tests. It is being developed as an anti-cancer drug. In this study OTS167 will be administrated to patients with AML, ALL, advanced MDSs, advanced MPNs, or advanced CML.
This study seeks to examine treatment therapy that will reduced regimen-related toxicity and relapse while promoting rapid immune reconstitution with limited serious graft-versus-host-disease (GVHD) and also improve disease-free survival and quality of life. The investigators propose to evaluate the safety and efficacy of selective naive T-cell depleted (by TCRɑβ and CD45RA depletion, respectively) haploidentical hematopoietic cell transplant (HCT) following reduced intensity conditioning regimen that avoids radiation in patients with hematologic malignancies that have relapsed or are refractory following prior allogeneic transplantation. PRIMARY OBJECTIVE: * To estimate engraftment by day +30 post-transplant in patients who receive TCRɑβ-depleted and CD45RA-depleted haploidentical donor progenitor cell transplantation following reduced intensity conditioning regimen without radiation. SECONDARY OBJECTIVES: * Assess the safety and feasibility of the addition of Blinatumomab in the early post-engraftment period in patients with CD19+ malignancy. * Estimate the incidence of malignant relapse, event-free survival, and overall survival at one-year post-transplantation. * Estimate incidence and severity of acute and chronic (GVHD). * Estimate the rate of transplant related mortality (TRM) in the first 100 days after transplantation.
Phase 1/2 study to determine safety, tolerability, pharmacokinetics, and anti-leukemic activity of Vodobatinib (K0706) in treatment-refractory/intolerant CML
This phase I/II trial studies the side effects and best dose of bosutinib when given together with inotuzumab ozogamicin and to see how well it works in treating patients with acute lymphoblastic leukemia or chronic myeloid leukemia that has come back or does not respond to treatment. Bosutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotoxins, such as inotuzumab ozogamicin, are antibodies linked to a toxic substance and may help find cancer cells that express CD22 and kill them without harming normal cells. Giving bosutinib together with inotuzumab ozogamicin may be a better treatment for acute lymphoblastic leukemia or chronic myeloid leukemia.
This pilot phase II trial studies how well a new reduced intensity conditioning regimen that includes haploidentical donor NK cells followed by the infusion of selectively T-cell depleted progenitor cell grafts work in treating younger patients with hematologic malignancies that have returned after or did not respond to treatment with a prior transplant. Giving chemotherapy and natural killer cells before a donor progenitor cell transplant may help stop the growth of cells in the bone marrow, including normal blood-forming cells (progenitor cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's cells. When the healthy progenitor cells from a related donor are infused into the patient they make red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Removing specific T cells from the donor cells before the transplant may prevent this.
The goal of this clinical research study is to find the highest tolerated dose of the combination of nilotinib and MEK-162 that can be given to patients with CML or acute leukemia. Researchers also want to learn if the drug combination can help to control the disease. The safety of the drug combination will also be studied.
The design of a phase I, open label, dose finding study was chosen in order to establish a safe and tolerated dose of single agent ABL001 in Chronic myeloid leukemia (CML) and Philadelphia chromosome positive Acute lymphoblastic leukemia (Ph+ ALL) patients who are relapsed or refractory to or are intolerant of Tyrosine kinase inhibitors (TKIs), and of ABL001+Nilotinib, ABL001+Imatinib and ABL001+Dasatinib in Ph positive CML patients who are relapsed or refractory to TKIs.
The purpose of the study is to find out what effects (good and bad) Gleevec® (Imatinib mesylate) combined with chemotherapy has on participants and their acute myeloid leukemia.
Assess the safety, tolerability and efficacy of rapamycin in combination with HiVAC in relapsed and refractory patients with aggressive lymphoid malignancies.
This is a two-part, open-label, Phase I/II study in subjects with relapsed or refractory TdT-positive leukemia for which no standard therapies are expected to result in durable remission.
The purpose of this study is to evaluate the safety of combined chemotherapy treatment (CLAG regimen) with Imatinib Mesylate (Gleevec) in patients with AML.
Patients with refractory or relapsed hematologic malignancies will receive CP-4055 intravenously(IV) on Day 1-5 every three weeks until complete response or disease worsening/progressing
During the Core Phase of the study, participants received STI571 at a dose of 400 milligrams (mg) daily for up to 12 months. Participants completing 12 months of therapy were eligible to continue treatment in the Extension Phase of the study provided that, in the opinion of the investigator, they had benefited from treatment with STI571 and there were no safety concerns.
The purpose of this trial is to assess the efficacy, safety, tolerability, biologic activity, and pharmacokinetics of AMN107 in six groups of patients with one of the following conditions: Relapsed/refractory Ph+ Acute lymphoblastic leukemia (ALL) (arm 1) Group A - Imatinib failure only (arms 2, 3 and 4) * imatinib-resistant or intolerant CML - Chronic Phase (CP) * imatinib-resistant or intolerant CML - Accelerated Phase (AP) * imatinib-resistant or intolerant CML - Blast Crisis (BC) Group B - Imatinib and other TKI failure (arms 2, 3 and 4) * imatinib-resistant or intolerant CML - Chronic Phase (CP) * imatinib-resistant or intolerant CML - Accelerated Phase (AP) * imatinib-resistant or intolerant CML - Blast Crisis (BC) Hypereosinophilic syndrome/chronic eosinophilic leukemia (HES/CEL) (arm 5) Systemic mastocytosis (Sm) (arm 6)
The goal is to compare the drug combinations clofarabine/idarubicin/ara-C, clofarabine/ara-C, and clofarabine/idarubicin in the treatment of patients with Acute Myeloid Leukemia, high-grade MDS, or myeloid blast phase of Chronic Myeloid Leukemia who have relapsed following their initial therapy.
To determine the safety and efficacy of decitabine in patients with Philadelphia chromosome-positive chronic myelogenous leukemia chronic phase that were previously treated with imatinib mesylate (STI 571) and became resistant/refractory or were found to be intolerant to the drug.
To determine the safety and efficacy of decitabine in patients with Philadelphia chromosome-positive chronic myelogenous leukemia blastic phase that were previously treated with imatinib mesylate (STI 571) and became resistant/refractory or were found to be intolerant to the drug.
To determine the safety and efficacy of decitabine in patients with Philadelphia chromosome-positive chronic myelogenous leukemia accelerated phase that were previously treated with imatinib mesylate (STI 571) and became resistant/refractory or were found to be intolerant to the drug.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Chemoprotective drugs, such as amifostine, may protect normal cells from the side effects of chemotherapy. PURPOSE: Phase II trial to study the effectiveness of amifostine and high-dose combination chemotherapy in treating patients with acute myeloid leukemia or chronic myelogenous leukemia.
To assess the proportion of patients with donor neutrophil engraftment within 30 days of allogeneic transplant. To assess the incidence of acute GvHD during the first 100 days after transplantation.
The use of venetoclax-based therapies for pediatric patients with relapsed or refractory malignancies is increasingly common outside of the clinical trial setting. For patients who cannot swallow tablets, it is common to crush the tablets and dissolve them in liquid to create a solution. However, no PK data exists in adults or children using crushed tablets dissolved in liquid in this manner, and as a result, the venetoclax exposure with this solution is unknown. Primary Objectives • To determine the pharmacokinetics of venetoclax when commercially available tablets are crushed and dissolved into a solution Secondary Objectives * To evaluate the safety of crushed venetoclax tablets administered as an oral solution * To determine the pharmacokinetics of venetoclax solution in patients receiving concomitant strong and moderate CYP3A inhibitors * To determine potential pharmacokinetic differences based on route of venetoclax solution administration (ie. PO vs NG tube vs G-tube) * To determine the concentration of venetoclax in cerebral spinal fluid when administered as an oral solution
This is a Phase II study of allogeneic hematopoietic stem cell transplant (HCT) using a myeloablative preparative regimen (of either total body irradiation (TBI); or, fludarabine/busulfan for patients unable to receive further radiation). followed by a post-transplant graft-versus-host disease (GVHD) prophylaxis regimen of post-transplant cyclophosphamide (PTCy), tacrolimus (Tac), and mycophenolate mofetil (MMF).
This research study involves participants who have acute lymphoblastic or acute myelogenous leukemia that has relapsed or has become resistant (or refractory) to standard therapies. This research study is evaluating a drug called KPT-330. Laboratory and other studies suggest that the study drug, KPT-330, may prevent leukemia cells from growing and may lead to the destruction of leukemia cells. It is thought that KPT-330 activates cellular processes that increase the death of leukemia cells. The main goal of this study is to evaluate the side effects of KPT-330 when it is administered to children and adolescents with relapsed or refractory leukemia.