56 Clinical Trials for Various Conditions
This is a phase II, open-label, prospective study of T cell receptor alpha/beta depletion (α/β TCD) peripheral blood stem cell (PBSC) transplantation for children and adults with hematological malignancies
The goal of this clinical research study is to learn about the safety and effectiveness of rituximab given by spinal tap in patients with lymphoid malignancies involving the central nervous system. A spinal tap (also called a lumbar puncture) is when fluid surrounding the spinal cord is collected by inserting a needle into the lower back. The affected area is numbed with local anesthetic during the procedure. It will also be used to give chemotherapy in this study. Rituximab is designed to bind to a protein, called CD20, that is on the surface of the leukemia cells. This may cause the leukemia cells to die.
Phase II trial to study the effectiveness of radiation therapy following chemotherapy in treating children with CNS relapse from acute lymphoblastic leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with radiation therapy may kill more cancer cells.
The objective of this protocol is to improve survival for adults with acute lymphoblastic leukemia or acute lymphoblastic lymphoma by reducing systemic and central nervous system (CNS) relapse with acceptable toxicity using intensive chemotherapy with liposomal cytarabine (Depocyt®) CNS prophylaxis.
Background: - The anti-cancer drug RO4929097 is being tested for its ability to block blood vessel growth to tumors and slow or stop the growth of cancer cells. However, it has been used in only a small number of adults and has not yet been tested in children. Researchers are interested in determining whether RO4929097 is a safe and effective treatment for tumors or leukemia that has not responded to standard treatment. Objectives: - To determine the safety and effectiveness of RO4929097 as a treatment for children and adolescents who have been diagnosed with certain kinds of cancer that have not responded to standard treatment. Eligibility: - Children, adolescents, and young adults between 1 and 21 years of age who have been diagnosed with solid, nervous system, or blood-based cancers that have not responded to standard treatment. Design: * Participants will be screened with a medical history, physical examination, blood and urine tests, and imaging studies. Some participants may also have a bone marrow biopsy to evaluate the state of their disease. * Participants will be separated into three groups: One group will receive RO4929097 alone, and the other two will receive RO4929097 in combination with the immune-suppressing drug dexamethasone. * RO4929097 will be given as tablets on one of two schedules: days 1 to 3 of every week (Schedule A) or days 1 to 5 of every week (Schedule B). The dosing schedule will be determined randomly. Every 4-week treatment period is one cycle, and participants may receive RO4929097 for up to 24 cycles. * Participants will have frequent blood and urine tests and imaging studies to evaluate the progress of treatment, and will be asked to keep a diary to monitor any side effects.
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage cancer cells. Giving combination chemotherapy together with radiation therapy may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving chemotherapy together with radiation therapy works in treating patients with acute lymphoblastic leukemia that has relapsed in the CNS and/or testes.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage cancer cells. Giving radiation therapy to the head or intrathecal chemotherapy may prevent cancer cells from spreading to the brain. It is not yet known which treatment regimen is more effective for acute lymphoblastic leukemia. PURPOSE: Randomized phase III trial to compare the effectiveness of radiation therapy to the head or intrathecal chemotherapy plus high dose cytarabine in preventing CNS disease in children who have acute lymphoblastic leukemia.
We are the missing link in clinical trials, connecting patients and researchers seamlessly and conveniently using a mobile health platform to advance medical research. We make it easy for patients to contribute to research for medical conditions that matter most to them, regardless of their location or ability to travel.
RATIONALE: Vaccines made from a person's cancer proteins may help the body build an effective immune response to kill cancer cells. Colony-stimulating factors, such as GM-CSF, may increase the number of immune cells found in bone marrow or peripheral blood. Giving vaccine therapy together with GM-CSF may make a stronger immune response and kill more cancer cells. PURPOSE: This phase II trial is studying the side effects and how well giving vaccine therapy together with GM-CSF works in treating patients with CNS lymphoma.
RATIONALE: Drugs used in chemotherapy, such as topotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I trial is studying the side effects, best way to give, and best dose of topotecan when given by intraventricular infusion in treating young patients with neoplastic meningitis due to leukemia, lymphoma, or solid tumors.
RATIONALE: Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Beta-glucan may increase the effectiveness of rituximab by making cancer cells more sensitive to the monoclonal antibody. PURPOSE: This phase I trial is studying the side effects and best dose of beta-glucan when given together with rituximab in treating young patients with relapsed or progressive lymphoma or leukemia or with lymphoproliferative disorder related to donor stem cell transplantation.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the safety of delivering intrathecal busulfan in children and adolescents who have refractory CNS cancer and to estimate the maximum tolerated dose of this treatment regimen.
This is an open-label, multi-center Phase 1/2 study of oral LOXO-305 (pirtobrutinib) in patients with CLL/SLL and NHL who have failed or are intolerant to standard of care.
Primary Objectives: 1. To evaluate the feasibility of enrolling children and adolescents with newly diagnosed brain tumors, leukemia, or lymphoma in a program designed to prevent the academic and cognitive declines that commonly result following central nervous system (CNS) disease and treatment. Hypothesis 1: Despite the rigors of disease and treatment, children and adolescents will be able to participate in the CTP while they are receiving treatment for cancer. The high participation of our patients in routine school activities during treatment suggests that they will have the energy and interest required to participate in cognitive training. 2. To evaluate whether a Cognitive Training Program (CTP) might be helpful to patients in preventing attention deficits that commonly result following CNS disease and therapy. Hypothesis 2: Patients in the CTP arm of the study will show fewer declines in neurocognitive performance at the end of training and again six months later, as compared with the control group who will receive the usual services provided by the Education Program in Pediatrics. 3. To explore the relationship between CTP treatment compliance and stability/decline in cognitive and academic performance in children and adolescents who are being treated for brain tumors, leukemia, and lymphoma. Hypothesis 3: Level of compliance with CTP treatment will be predictive of a patient's performance on neurocognitive measures.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of imatinib mesylate in treating patients who have advanced cancer and liver dysfunction
RATIONALE: The Epstein Barr virus can cause cancer and lymphoproliferative disorders. Ganciclovir is an antiviral drug that acts against the Epstein Barr virus. Arginine butyrate may make virus cells more sensitive to ganciclovir. Combining ganciclovir and arginine butyrate may kill more Epstein Barr virus cells and tumor cells. PURPOSE: Phase I trial to study the effectiveness of arginine butyrate plus ganciclovir in treating patients who have cancer or lymphoproliferative disorders that are associated with the Epstein Barr virus.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of arsenic trioxide in treating patients who have advanced hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Chemoprotective drugs such as amifostine may protect normal cells from the side effects of chemotherapy. Colony-stimulating factors such as filgrastim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of chemotherapy. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy consisting of paclitaxel plus carboplatin given with amifostine and filgrastim in treating patients with recurrent or metastatic cancer.
RATIONALE: Interferon alfa may interfere with the growth of cancer cells. PURPOSE: Phase II trial to study the effectiveness of interferon alfa in treating children with an HIV-related cancer including leukemia, non-Hodgkin's lymphoma, CNS lymphoma, or other solid tumors.
The purpose of this study is to evaluate feasibility and acceptability of completing PROs among AYAs randomized to Choice PRO vs Fixed PRO.
The purpose of this study is to test the safety of 19(T2)28z1xx CAR T cells in people with relapsed/refractory B-cell cancers. The researchers will try to find the highest dose of 19(T2)28z1xx CAR T cells that causes few or mild side effects in participants. Once they find this dose, they can test it in future participants to see if it is effective in treating their relapsed/refractory B-cell cell cancers. This study will also look at whether 19(T2)28z1xx CAR T cells work against participants' cancer.
This study is to collect and validate regulatory-grade real-world data (RWD) in oncology using the novel, Master Observational Trial construct. This data can be then used in real-world evidence (RWE) generation. It will also create reusable infrastructure to allow creation or affiliation with many additional RWD/RWE efforts both prospective and retrospective in nature.
This phase I clinical trial is studying the side effects and best dose of RO4929097 when given together with capecitabine in treating patients with refractory solid tumors. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving RO4929097 together with chemotherapy may kill more tumor cells.
RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.
RATIONALE: Methadone, morphine, or oxycodone may help relieve pain caused by cancer. It is not yet known whether methadone is more effective than morphine or oxycodone in treating pain in patients with cancer. PURPOSE: This randomized clinical trial is studying methadone to see how well it works compared with morphine or oxycodone in treating pain in patients with cancer.
RATIONALE: Pemetrexed disodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Studying samples of cerebrospinal fluid and blood from patients with cancer in the laboratory may help doctors learn how pemetrexed disodium works in the body and identify biomarkers related to cancer. PURPOSE: This clinical trial is studying the side effects and how well pemetrexed disodium works in treating patients with leptomeningeal metastases.
RATIONALE: Epoetin alfa and darbepoetin alfa may cause the body to make more red blood cells. They are used to treat anemia caused by chemotherapy in patients with cancer. PURPOSE: This randomized clinical trial is studying four different schedules of epoetin alfa or darbepoetin alfa to compare how well they work in treating patients with anemia caused by chemotherapy.
RATIONALE: Epoetin alfa may cause the body to make more red blood cells. It is used to treat anemia caused by cancer and chemotherapy. PURPOSE: This randomized phase II trial is studying how well epoetin alfa works in treating patients with anemia who are undergoing chemotherapy for cancer.
This phase I trial is studying the side effects and best dose of EMD 121974 in treating patients with solid tumors or lymphoma. Cilengitide (EMD 121974) may stop the growth of cancer cells by stopping blood flow to the cancer