Treatment Trials

47 Clinical Trials for Various Conditions

Focus your search

RECRUITING
A Study of Avutometinib for People With Solid Tumor Cancers
Description

The purpose of this study is to find out whether avutometinib is a safe treatment for advanced or recurrent solid tumor cancers in children and young adults. Researchers will look for the highest dose of avutometinib that is safe and cause few or mild side effects.

RECRUITING
Study of B7-H3, EGFR806, HER2, And IL13-Zetakine (Quad) CAR T Cell Locoregional Immunotherapy For Pediatric Diffuse Intrinsic Pontine Glioma, Diffuse Midline Glioma, And Recurrent Or Refractory Central Nervous System Tumors
Description

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with SC-CAR4BRAIN, an autologous CD4+ and CD8+ T cells lentivirally transduced to express to express combinations of B7-H3, EGFR806, HER2, and IL13-zetakine chimeric antigen receptors (CAR). CAR T cells are delivered via an indwelling catheter into the ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into their ventricular system, and meeting none of the exclusion criteria will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that target B7H3, EGFR806, HER2, and IL13-zetakine on tumor cells. Patients will be assigned to 1 of 2 treatment Arms based on the type of their tumor: * Arm A is for patients with DIPG (meaning primary disease localized to the pons, metastatic disease is allowed) anytime after standard radiation OR after progression. * Arm B is for patients with non-pontine DMG (meaning DMG in other parts of the brain such as the thalamus or spine) anytime after standard radiation OR after progression. This Arm also includes other recurrent/refractory CNS tumors.

COMPLETED
Preventative Skin Care for Children Undergoing Targeted CNS Tumor Therapy
Description

This research study is examining a preventive skin care regimen for children diagnosed with a brain tumor and receiving anti-cancer therapy with a MEK, Pan-RAF, or BRAF inhibitor.

UNKNOWN
SGT-53 in Children With Recurrent or Progressive CNS Malignancies
Description

An early phase 1 for pediatric patients with recurrent or progressive CNS malignancies

COMPLETED
COZMOS:Phase I/Ib Trial of Combined 5'Azacitidine and Carboplatin for Recurrent/Refractory Pediatric Brain/Solid Tumors
Description

Many pediatric brain and solid tumors have altered epigenetic landscapes, and altered DNA methylation. As such this study is a Phase I/Ib study of combined 5'Azacitidine with an escalating dose of carboplatin for all recurrent/refractory pediatric brain and solid tumors. The phase I component will establish with maximum tolerated dose of carboplatin with azacytidine. An expansion cohort will be recruited of up to 30 patients will follow consisting of 20 recurrent posterior fossa ependymoma and 10 recurrent supratentorial ependymoma.

COMPLETED
Antineoplaston Therapy in Treating Children With Primitive Neuroectodermal Tumors
Description

RATIONALE: Current therapies for children with primitive neuroectodermal tumors that have not responded to standard therapy provide very limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of children with primitive neuroectodermal tumors that have not responded to standard therapy. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on children (\> 6 months of age) with primitive neuroectodermal tumors that has not responded to standard therapy.

RECRUITING
Characterizing Sleep Among Long-term Survivors of Childhood Cancer
Description

The patients are being asked to take part in this clinical trial because they received cancer treatment as a child at St. Jude. The study comprehensively examines sleep among three distinct diagnostic groups of survivors in the SJLIFE cohort: ALL, CNS tumors, and non-CNS solid tumors. Primary Objective The primary aim of this protocol is to estimate the prevalence of various sleep disorders among long-term survivors of childhood ALL, CNS tumors, and non- CNS solid tumors. Exploratory Objective The exploratory objective of the study is to explore associations between the prevalence of sleep disorders and clinical outcomes collected in SJLIFE.

TERMINATED
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia
Description

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Conditions
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System ChoriocarcinomaChildhood Central Nervous System GerminomaChildhood Central Nervous System Mixed Germ Cell TumorChildhood Central Nervous System TeratomaChildhood Central Nervous System Yolk Sac TumorChildhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood Infratentorial EpendymomaChildhood MedulloepitheliomaChildhood Mixed GliomaChildhood OligodendrogliomaChildhood Supratentorial EpendymomaGonadotroph AdenomaPituitary Basophilic AdenomaPituitary Chromophobe AdenomaPituitary Eosinophilic AdenomaProlactin Secreting AdenomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Central Nervous System Embryonal TumorRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood MedulloblastomaRecurrent Childhood PineoblastomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Childhood Spinal Cord NeoplasmRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaRecurrent Pituitary TumorRecurrent/Refractory Childhood Hodgkin LymphomaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaTSH Secreting AdenomaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors
Description

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

TERMINATED
MK0752 in Treating Young Patients With Recurrent or Refractory CNS Cancer
Description

RATIONALE: MK0752 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of MK0752 in treating young patients with recurrent or refractory CNS cancer.

COMPLETED
Enzastaurin in Treating Young Patients With Refractory Primary CNS Tumors
Description

RATIONALE: Enzastaurin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of enzastaurin in treating young patients with refractory primary brain tumors.

COMPLETED
Valproic Acid in Treating Young Patients With Recurrent or Refractory Solid Tumors or CNS Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as valproic acid, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Valproic acid may also stop the growth of solid tumors or CNS tumors by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of valproic acid in treating patients with recurrent or refractory solid tumors or CNS tumors.

COMPLETED
Busulfan in Treating Children and Adolescents With Refractory CNS Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the safety of delivering intrathecal busulfan in children and adolescents who have refractory CNS cancer and to estimate the maximum tolerated dose of this treatment regimen.

COMPLETED
Temozolomide Followed by Radiation Therapy in Treating Children With Newly Diagnosed Malignant CNS Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Chemotherapy combined with radiation therapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of temozolomide followed by radiation therapy in treating children who have newly diagnosed malignant central nervous system tumors.

COMPLETED
Combination Chemotherapy Plus Gene Therapy in Treating Patients With CNS Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. Inserting a specific gene into a person's peripheral stem cells may improve the body's ability to fight cancer or make the cancer more sensitive to chemotherapy. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus gene therapy in treating patients who have CNS tumors.

COMPLETED
O6-benzylguanine and Carmustine in Treating Children With Refractory CNS Tumors
Description

Phase I trial to study the effectiveness of O6-benzylguanine and carmustine in treating children who have refractory CNS tumors. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells.

COMPLETED
Cisplatin and Etoposide Prior to Radiation Therapy in Treating Patients With CNS Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of cisplatin and etoposide in treating patients with CNS tumors.

COMPLETED
A Study of Ramucirumab (LY3009806) in Children With Refractory Solid Tumors
Description

The main purpose of this study is to evaluate the safety of the study drug known as ramucirumab in children with recurrent or refractory solid tumors including central nervous system (CNS) tumors.

COMPLETED
Carboplatin and Vincristine Plus Radiation Therapy Followed By Adjuvant Chemotherapy in Treating Young Patients With Newly Diagnosed CNS Embryonal Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as carboplatin and vincristine, work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining carboplatin and vincristine with radiation therapy followed by adjuvant chemotherapy may kill more tumor cells. PURPOSE: Randomized phase II trial to study the effectiveness of combination chemotherapy plus radiation therapy followed adjuvant chemotherapy in treating young patients who have newly diagnosed high-risk CNS embryonal tumors.

COMPLETED
Ribociclib and Everolimus in Treating Children With Recurrent or Refractory Malignant Brain Tumors
Description

This phase I trial studies the side effects and best dose of ribociclib and everolimus and to see how well they work in treating patients with malignant brain tumors that have come back or do not respond to treatment. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as everolimus, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and everolimus may work better at treating malignant brain tumors.

TERMINATED
Radiolabeled MAB Therapy in Patients With Refractory, Recurrent, or Advanced CNS or Leptomeningeal Cancer
Description

The purpose of this study is to test the feasibility and toxicity of administering intrathecal immunotherapy for patients with central nervous system/leptomeningeal (CNS/LM) malignancies.

COMPLETED
Radiation Therapy Compared With Chemotherapy and Radiation Therapy in Treating Patients With Newly Diagnosed Primary Central Nervous System (CNS) Germ Cell Tumor
Description

RATIONALE: Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die. It is not yet known whether radiation therapy alone is as effective as chemotherapy plus radiation therapy in treating germ cell tumor. PURPOSE: This randomized phase III trial is studying radiation therapy alone to see how well it works compared to chemotherapy and radiation therapy in treating patients with newly diagnosed primary CNS germ cell tumor.

UNKNOWN
Chemotherapy, Surgery, Radiation Therapy and Bone Marrow or Peripheral Stem Cell Transplantation in Treating Patients With Primary CNS Germ Cell Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Peripheral stem cell transplantation or bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Radiation therapy uses high-energy x-rays to damage tumor cells. PURPOSE: Phase II trial to study the effectiveness of chemotherapy, surgery, radiation therapy, and bone marrow or peripheral stem cell transplantation in treating patients who have primary CNS germ cell tumors.

COMPLETED
Temozolomide Plus Peripheral Stem Cell Transplantation in Treating Children With Newly Diagnosed Malignant Glioma or Recurrent CNS or Other Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of temozolomide when given with peripheral stem cell transplantation and to see how well they work in treating children with newly diagnosed malignant glioma or recurrent CNS tumors or other solid tumors.

COMPLETED
Combination Chemotherapy Followed by Bone Marrow and/or Peripheral Stem Cell Transplantation in Treating Patients With Recurrent Medulloblastoma or CNS Germ Cell Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so that they stop growing or die. bone marrow transplantation and peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy followed by bone marrow transplantation and/or peripheral stem cell transplantation in treating patients who have recurrent medulloblastoma or CNS germ cell tumors.

RECRUITING
Immunotherapy for Malignant Pediatric Brain Tumors Employing Adoptive Cellular Therapy (IMPACT)
Description

This is an open-label phase 1 safety and feasibility study that will employ multi-tumor antigen specific cytotoxic T lymphocytes (TSA-T) directed against proteogenomically determined personalized tumor-specific antigens (TSA) derived from a patient's primary brain tumor tissues. Young patients with embryonal central nervous system (CNS) malignancies typically are unable to receive irradiation due to significant adverse effects and are treated with intensive chemotherapy followed by autologous stem cell rescue; however, despite intensive therapy, many of these patients relapse. In this study, individualized TSA-T cells will be generated against proteogenomically determined tumor-specific antigens after standard of care treatment in children less than 5 years of age with embryonal brain tumors. Correlative biological studies will measure clinical anti-tumor, immunological and biomarker effects.

TERMINATED
Antineoplaston Therapy in Treating Children With Rhabdoid Tumor of the Central Nervous System
Description

RATIONALE: Current therapies for childhood Rhabdoid tumors provide limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of childhood Rhabdoid tumors. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on children (\> 6 months of age) with Rhabdoid tumors.

TERMINATED
Topotecan in Treating Young Patients With Neoplastic Meningitis Due to Leukemia, Lymphoma, or Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as topotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I trial is studying the side effects, best way to give, and best dose of topotecan when given by intraventricular infusion in treating young patients with neoplastic meningitis due to leukemia, lymphoma, or solid tumors.