47 Clinical Trials for Various Conditions
The purpose of this study is to find out whether avutometinib is a safe treatment for advanced or recurrent solid tumor cancers in children and young adults. Researchers will look for the highest dose of avutometinib that is safe and cause few or mild side effects.
This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with SC-CAR4BRAIN, an autologous CD4+ and CD8+ T cells lentivirally transduced to express to express combinations of B7-H3, EGFR806, HER2, and IL13-zetakine chimeric antigen receptors (CAR). CAR T cells are delivered via an indwelling catheter into the ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into their ventricular system, and meeting none of the exclusion criteria will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that target B7H3, EGFR806, HER2, and IL13-zetakine on tumor cells. Patients will be assigned to 1 of 2 treatment Arms based on the type of their tumor: * Arm A is for patients with DIPG (meaning primary disease localized to the pons, metastatic disease is allowed) anytime after standard radiation OR after progression. * Arm B is for patients with non-pontine DMG (meaning DMG in other parts of the brain such as the thalamus or spine) anytime after standard radiation OR after progression. This Arm also includes other recurrent/refractory CNS tumors.
This research study is examining a preventive skin care regimen for children diagnosed with a brain tumor and receiving anti-cancer therapy with a MEK, Pan-RAF, or BRAF inhibitor.
An early phase 1 for pediatric patients with recurrent or progressive CNS malignancies
Many pediatric brain and solid tumors have altered epigenetic landscapes, and altered DNA methylation. As such this study is a Phase I/Ib study of combined 5'Azacitidine with an escalating dose of carboplatin for all recurrent/refractory pediatric brain and solid tumors. The phase I component will establish with maximum tolerated dose of carboplatin with azacytidine. An expansion cohort will be recruited of up to 30 patients will follow consisting of 20 recurrent posterior fossa ependymoma and 10 recurrent supratentorial ependymoma.
RATIONALE: Current therapies for children with primitive neuroectodermal tumors that have not responded to standard therapy provide very limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of children with primitive neuroectodermal tumors that have not responded to standard therapy. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on children (\> 6 months of age) with primitive neuroectodermal tumors that has not responded to standard therapy.
The patients are being asked to take part in this clinical trial because they received cancer treatment as a child at St. Jude. The study comprehensively examines sleep among three distinct diagnostic groups of survivors in the SJLIFE cohort: ALL, CNS tumors, and non-CNS solid tumors. Primary Objective The primary aim of this protocol is to estimate the prevalence of various sleep disorders among long-term survivors of childhood ALL, CNS tumors, and non- CNS solid tumors. Exploratory Objective The exploratory objective of the study is to explore associations between the prevalence of sleep disorders and clinical outcomes collected in SJLIFE.
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.
RATIONALE: MK0752 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of MK0752 in treating young patients with recurrent or refractory CNS cancer.
RATIONALE: Enzastaurin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of enzastaurin in treating young patients with refractory primary brain tumors.
This phase I trial is studying the side effects and best dose of AZD2171 in treating young patients with recurrent, progressive, or refractory primary CNS tumors. AZD2171 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
RATIONALE: Drugs used in chemotherapy, such as valproic acid, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Valproic acid may also stop the growth of solid tumors or CNS tumors by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of valproic acid in treating patients with recurrent or refractory solid tumors or CNS tumors.
This phase I trial is studying the side effects and best dose of lenalidomide in treating young patients with recurrent, progressive, or refractory CNS tumors. Lenalidomide may stop the growth of CNS tumors by blocking blood flow to the tumor. It may also stimulate the immune system in different ways and stop tumor cells from growing.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the safety of delivering intrathecal busulfan in children and adolescents who have refractory CNS cancer and to estimate the maximum tolerated dose of this treatment regimen.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Chemotherapy combined with radiation therapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of temozolomide followed by radiation therapy in treating children who have newly diagnosed malignant central nervous system tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. Inserting a specific gene into a person's peripheral stem cells may improve the body's ability to fight cancer or make the cancer more sensitive to chemotherapy. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus gene therapy in treating patients who have CNS tumors.
Phase I trial to study the effectiveness of O6-benzylguanine and carmustine in treating children who have refractory CNS tumors. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of cisplatin and etoposide in treating patients with CNS tumors.
The main purpose of this study is to evaluate the safety of the study drug known as ramucirumab in children with recurrent or refractory solid tumors including central nervous system (CNS) tumors.
RATIONALE: Drugs used in chemotherapy, such as carboplatin and vincristine, work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining carboplatin and vincristine with radiation therapy followed by adjuvant chemotherapy may kill more tumor cells. PURPOSE: Randomized phase II trial to study the effectiveness of combination chemotherapy plus radiation therapy followed adjuvant chemotherapy in treating young patients who have newly diagnosed high-risk CNS embryonal tumors.
This phase I trial studies the side effects and best dose of ribociclib and everolimus and to see how well they work in treating patients with malignant brain tumors that have come back or do not respond to treatment. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as everolimus, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and everolimus may work better at treating malignant brain tumors.
The purpose of this study is to test the feasibility and toxicity of administering intrathecal immunotherapy for patients with central nervous system/leptomeningeal (CNS/LM) malignancies.
RATIONALE: Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die. It is not yet known whether radiation therapy alone is as effective as chemotherapy plus radiation therapy in treating germ cell tumor. PURPOSE: This randomized phase III trial is studying radiation therapy alone to see how well it works compared to chemotherapy and radiation therapy in treating patients with newly diagnosed primary CNS germ cell tumor.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Peripheral stem cell transplantation or bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Radiation therapy uses high-energy x-rays to damage tumor cells. PURPOSE: Phase II trial to study the effectiveness of chemotherapy, surgery, radiation therapy, and bone marrow or peripheral stem cell transplantation in treating patients who have primary CNS germ cell tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of temozolomide when given with peripheral stem cell transplantation and to see how well they work in treating children with newly diagnosed malignant glioma or recurrent CNS tumors or other solid tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so that they stop growing or die. bone marrow transplantation and peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy followed by bone marrow transplantation and/or peripheral stem cell transplantation in treating patients who have recurrent medulloblastoma or CNS germ cell tumors.
This is an open-label phase 1 safety and feasibility study that will employ multi-tumor antigen specific cytotoxic T lymphocytes (TSA-T) directed against proteogenomically determined personalized tumor-specific antigens (TSA) derived from a patient's primary brain tumor tissues. Young patients with embryonal central nervous system (CNS) malignancies typically are unable to receive irradiation due to significant adverse effects and are treated with intensive chemotherapy followed by autologous stem cell rescue; however, despite intensive therapy, many of these patients relapse. In this study, individualized TSA-T cells will be generated against proteogenomically determined tumor-specific antigens after standard of care treatment in children less than 5 years of age with embryonal brain tumors. Correlative biological studies will measure clinical anti-tumor, immunological and biomarker effects.
RATIONALE: Current therapies for childhood Rhabdoid tumors provide limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of childhood Rhabdoid tumors. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on children (\> 6 months of age) with Rhabdoid tumors.
RATIONALE: Drugs used in chemotherapy, such as topotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I trial is studying the side effects, best way to give, and best dose of topotecan when given by intraventricular infusion in treating young patients with neoplastic meningitis due to leukemia, lymphoma, or solid tumors.