56 Clinical Trials for Various Conditions
This is a first-in-human clinical trial evaluating the safety of an alpha-radiation treatment (Lead-212 labelled Pentixather) in patients who have been diagnosed with, and previously treated, for atypical carcinoid lesions of the lung.
Phase I trial to study the effectiveness of trastuzumab plus R115777 in treating patients who have advanced or metastatic cancer. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining trastuzumab with R115777 may kill more tumor cells.
As our population ages and we diagnose early lung cancer in patients who cannot undergo surgery due to multiple medical conditions, there is growing interest in minimally invasive modalities to treat these tumors. In this study we are assessing the ability of bronchoscopic laser ablation to kill the cancer cells in these tumors. Patients will undergo bronchoscopy (a tube-like instrument inserted through the mouth to view the inside of the trachea, air passages, and lungs). A thin catheter will be passed through the wind-pipes and into the lung tumor with computed tomography guidance. A laser probe is then passed through this catheter and it is used to destroy the tumor with heat. Patients will then undergo lung surgery with resection of the tumor, and the resected specimen will be reviewed to describe the amount of tumor-kill produced by the laser.
Cancer patients are often given the choice of delaying or avoiding treatment as one of their options. However, there is not much information guiding lung cancer patients and their clinicians regarding this approach. Active surveillance is a way of either delaying or avoiding treatment and its possible side effects through carefully watching for changes in the tumor and considering treatment if there is progression. The purpose of this research study is to evaluate active surveillance and ways to better understand if and when to treat patients with stage IA lung cancer.
This phase II trial studies regorafenib in treating patients with neuroendocrine tumors that have spread from the primary site (place where it started) to other places in the body. Regorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of cixutumumab when given together with everolimus and octreotide acetate in treating patients with advanced low- or intermediate-grade neuroendocrine cancer. Monoclonal antibodies, such as cixutumumab, may find tumor cells and help carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Octreotide acetate may interfere with the growth of tumor cells and slow the growth of neuroendocrine cancer. Giving cixutumumab together with everolimus and octreotide acetate may be a better treatment for neuroendocrine cancer.
This phase II trial studies how well temsirolimus and bevacizumab work in treating patients with advanced endometrial, ovarian, liver, carcinoid, or islet cell cancer. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of cancer by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.
This phase II trial studies how well pazopanib hydrochloride works in treating patients with advanced neuroendocrine cancer. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
Phase II trial to study the effectiveness of romidepsin in treating patients who have locally advanced or metastatic neuroendocrine tumors. Drugs used in chemotherapy, such as romidepsin, work in different ways to stop tumor cells from dividing so they stop growing or die.
Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy
This study employs a 2-stage design that aims to evaluate the efficacy and safety of ENV- 101, a potent Hedgehog (Hh) pathway inhibitor, in patients with refractory advanced solid tumors characterized by loss of function (LOF) mutations in the Patched-1 (PTCH1) gene. Stage 1 of this study will enroll approximately 44 patients randomized between two dose levels. As appropriate, Stage 2 of the study will expand enrollment based on the results of Stage 1.
RATIONALE: Studying samples of sputum and tissue in the laboratory from patients with dysplasia or cancer may help doctors identify and learn more about biomarkers related to cancer. It may also help the study of cancer in the future. PURPOSE: This laboratory study is looking at biomarkers in patients with respiratory tract dysplasia or lung cancer, head and neck cancer, or aerodigestive tract cancer.
RATIONALE: Stereotactic body radiation therapy may be able to send x-rays directly to the tumor and cause less damage to normal tissue. Abdominal compression methods that hold the body and the tumor from moving during treatment may permit radiation therapy to kill more tumor cells. This study is looking at the comfort level of two abdominal compression methods in patients with lung tumors undergoing stereotactic body radiation therapy. PURPOSE: This phase I trial is studying the comfort level of two abdominal compression methods used to hold patients still while undergoing stereotactic body radiation therapy for lung tumors.
RATIONALE: Diagnostic procedures, such as optical coherence tomography, may help find and diagnose lung cancer or precancerous cells. PURPOSE: This phase I trial is studying how well optical coherence tomography of the airway works in detecting abnormal cells in patients undergoing surgery for lung cancer or lung disease.
RATIONALE: Studying samples of blood and tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help the study of cancer in the future. PURPOSE: This clinical trial is analyzing the DNA in blood and tissue samples from patients with lung cancer.
RATIONALE: Printed educational materials, such as the Facing Forward Series: Life After Cancer Treatment manual, may help make the transition from cancer patient to cancer survivor easier in patients who are finishing treatment for cancer. It is not yet known if the Facing Forward Series: Life After Cancer Treatment manual and The Cancer Information Service, Questions and Answers fact sheet is more effective than the The Cancer Information Service, Questions and Answers fact sheet alone in helping to make life after cancer treatment easier and to improve quality of life in patients with breast cancer, colorectal cancer, prostate cancer, or chest cancer. PURPOSE: This randomized clinical trial is studying how well printed education materials work in assisting patients who are finishing treatment for stage I, stage II, or stage IIIA breast cancer, colorectal cancer, prostate cancer, or chest cancer to make the transition from cancer patient to cancer survivor easier.
RATIONALE: Questionnaires that assess symptoms caused by cancer and cancer therapy may help improve the ability to plan treatment for patients with invasive cancer to help them live longer and more comfortably. PURPOSE: This clinical trial is studying symptoms caused by cancer and cancer therapy in patients with invasive breast, lung, prostate, or colorectal cancer.
RATIONALE: Cryotherapy kills tumor cells by freezing them. This may be an effective treatment for primary lung cancer or lung metastases that cannot be removed by surgery. PURPOSE: This clinical trial is studying how well cryotherapy works in treating patients with primary lung cancer or lung metastases that cannot be removed by surgery.
RATIONALE: Drugs used in chemotherapy, such as fluorouracil, leucovorin, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of neuroendocrine tumors by blocking blood flow to the tumor. Giving combination chemotherapy together with bevacizumab may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects of giving combination chemotherapy together with bevacizumab and to see how well it works in treating patients with advanced neuroendocrine tumors.
RATIONALE: Hepatic arterial infusion uses a catheter to deliver anticancer substances directly into the liver. Drugs used in chemotherapy, such as melphalan, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving drugs in different ways may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving an hepatic arterial infusion of melphalan together with hepatic perfusion works in treating patients with unresectable liver cancer.
RATIONALE: Thalidomide may stop the growth of cancer by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining thalidomide with docetaxel may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining thalidomide with docetaxel in treating patients who have advanced cancer.
RATIONALE: Thalidomide may stop the growth of neuroendocrine tumors by stopping blood flow to the tumor. PURPOSE: Phase II trial to study the effectiveness of thalidomide in treating patients who have metastatic neuroendocrine tumors.
RATIONALE: Radiofrequency ablation uses high-frequency electric current to kill tumor cells. CT-guided radiofrequency ablation may be effective treatment for lung cancer. PURPOSE: Phase II trial to study the effectiveness of radiofrequency ablation in treating patients who have refractory or advanced lung cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Giving drugs in different ways may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of inhaled doxorubicin in treating patients who have advanced solid tumors affecting the lungs.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Heating paclitaxel to several degrees above body temperature and infusing it to the affected area around the tumor may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of paclitaxel given by hyperthermic perfusion in treating patients with lung cancer or lung metastases that cannot be removed by surgery.
RATIONALE: Vaccines made from a peptide may make the body build an immune response to kill tumor cells. Combining vaccine therapy with interleukin-2 and/or sargramostim may be a more effective treatment for solid tumors. PURPOSE: Phase II trial to study the effectiveness of vaccine therapy plus interleukin-2 and/or sargramostim in treating adults who have metastatic solid tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one chemotherapy drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of capecitabine combined with cisplatin in treating patients who have locally advanced or metastatic solid tumors .
RATIONALE: Radiolabeled drugs such as yttrium Y 90 SMT 487 can locate tumor cells and deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase I trial to study the effectiveness of yttrium Y 90 SMT 487 in treating patients who have refractory or recurrent cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to compare the effectiveness of docetaxel in treating Caucasian and African American patients who have solid tumors.
RATIONALE: Radiation therapy uses high-energy x-rays and other sources to damage tumor cells. Giving radiation therapy in different ways may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of indium In 111 pentetreotide in treating patients who have refractory cancer.