4 Clinical Trials for Various Conditions
The purpose of this study is to determine whether a posterior fossa decompression or a posterior fossa decompression with duraplasty results in better patient outcomes with fewer complications and improved quality of life in those who have Chiari malformation type I and syringomyelia.
The purpose of this investigation is to evaluate maternal and fetal outcomes following fetoscopic repair of fetal spina bifida at the Johns Hopkins Hospital. The hypothesis of this study is that fetoscopic spina bifida repair is feasible and has the same effectiveness as open repair of fetal spina bifida, but with the benefit of significantly lower maternal and fetal complication rates. The fetal benefit of the procedure will be the prenatal repair of spina bifida. The maternal benefit of fetoscopic spina bifida repair will be the avoidance of a large uterine incision. This type of incision increases the risk of uterine rupture and requires that all future deliveries are by cesarean section. The use of the minimally invasive fetoscopic surgical technique may also lower the risk of preterm premature rupture of membranes and preterm birth compared to open fetal surgery. Finally, successful fetoscopic spina bifida repair also makes vaginal delivery possible.
Duke University Medical Center is investigating the hereditary basis of Chiari type I malformations with or without syringomyelia (CM1/S). Our research is aimed at learning if CM1/S is indeed caused by factors inherited through the family and, if so, which genes are involved.
The purpose of this study is to better understand the genetic factors related to the Chiari I malformation. In people with this abnormality, the lower part of the skull is smaller than normal. As a result, the lowest part of the brain, called the cerebellar tonsils, protrudes out of the hole at the bottom of the skull into the spinal canal. This study will try to discover the location of the genes responsible for the malformation. Candidates for this study are: 1) Patients with Chiari I malformation who also have a family member with the abnormality or a family member with syringomyelia (a cyst in the spinal cord that is often associated with the Chiari I malformation). 2) Family members of patients with the Chiari I malformation. Participants will have a medical history and physical and neurologic examinations. They will undergo magnetic resonance imaging (MRI) of the brain and cervical (neck) spinal cord to measure the size of the head and determine the presence of the Chiari I malformation and syringomyelia. A small blood sample (about 2 tablespoons) will be drawn for DNA studies relating to the Chiari I malformation.