172 Clinical Trials for Various Conditions
This phase I trial studies the side effects and the best dose of temsirolimus when given together with dexamethasone, mitoxantrone hydrochloride, vincristine sulfate, and pegaspargase in treating young patients with relapsed acute lymphoblastic leukemia or non-Hodgkin lymphoma. Temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as dexamethasone, mitoxantrone hydrochloride, vincristine sulfate, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus with combination chemotherapy may be and effective treatment for acute lymphoblastic leukemia or non-Hodgkin lymphoma.
This clinical trial is looking at brain function in young patients receiving methotrexate for acute lymphoblastic leukemia. Learning about the long-term effects of methotrexate on brain function may help doctors plan cancer treatment.
The overall objective of this protocol is to improve the cure rate of relapsed precursor B-cell acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma. This phase II trial is studying risk-directed therapy for B-lymphoblastic leukemia or lymphoma in first relapse. Standard risk (SR) and high risk (HR) participants will receive different therapy. Treatment will consist of chemotherapy for SR participants, and chemotherapy followed by hematopoietic stem cell transplant (HSCT) for HR in first relapse. Induction therapy consists of three blocks of chemotherapy. The first block is a novel immunotherapy regimen that includes chemotherapy, rituximab and infusion of haploidentical natural killer (NK) cells. SR participants will continue to receive chemotherapy for a total duration of approximately 2 years. HR participants will be candidates for HSCT and will proceed to transplant once a suitable donor is found and their minimal residual disease (MRD) is negative.
This partially randomized phase III trial studies the side effects of different combinations of risk-adapted chemotherapy regimens and how well they work in treating younger patients with newly diagnosed standard-risk acute lymphoblastic leukemia or B-lineage lymphoblastic lymphoma that is found only in the tissue or organ where it began (localized). Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy), giving the drugs in different doses, and giving the drugs in different combinations may kill more cancer cells.
This pilot clinical trial studies the side effects of pegaspargase when given together with combination chemotherapy in treating patients with newly diagnosed high-risk acute lymphoblastic leukemia. Pegaspargase may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) together with pegaspargase may kill more cancer cells.
This phase II/III trial is studying the side effects and how well giving dasatinib together with combination chemotherapy works in treating young patients with newly diagnosed acute lymphoblastic leukemia (ALL). Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with combination chemotherapy may kill more cancer cells.
This randomized clinical trial is studying giving calaspargase pegol together with combination chemotherapy to see how well it works compared with giving pegaspargase together with combination chemotherapy in treating younger patients with newly diagnosed high-risk acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells.
This randomized phase III trial is studying different combination chemotherapy regimens and comparing how well they work in treating patients with newly diagnosed acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells.
This randomized phase III trial is studying dexamethasone to see how well it works compared to prednisone during induction therapy. This trial is also studying methotrexate and leucovorin calcium to see how well they work compared to methotrexate alone during maintenance therapy in treating patients with newly diagnosed acute lymphoblastic leukemia (ALL). Drugs used in chemotherapy, such as dexamethasone, prednisone, methotrexate, and leucovorin calcium, work in different ways to stop cancer cells from dividing so they stop growing or die. Giving more than one drug may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating acute lymphoblastic leukemia.
This phase II trial is studying how well fludarabine phosphate and total-body irradiation followed by donor peripheral blood stem cell transplant work in treating patients with acute lymphoblastic leukemia or chronic myelogenous leukemia that has responded to previous treatment with imatinib mesylate, dasatinib, or nilotinib. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving mycophenolate mofetil and cyclosporine after the transplant may stop this from happening.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Imatinib mesylate may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth. Combining more than one chemotherapy drug with imatinib mesylate may kill more cancer cells. Randomized phase II trial to study the effectiveness of combination chemotherapy and imatinib mesylate in treating children who have relapsed acute lymphoblastic leukemia.
RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by the chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells are rejected by the body's normal tissues. Transplanting donated cells that have been treated with psoralen may prevent this from happening. PURPOSE: Phase I trial to study the effectiveness of chemotherapy, radiation therapy, and psoralen-treated donor cells in treating patients who are undergoing peripheral stem cell transplantation for hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects and best dose of ixabepilone in treating young patients with relapsed or refractory solid tumors or leukemia.
This phase II trial is studying how well rituximab together with ifosfamide, carboplatin, and etoposide works in treating young patients with recurrent or refractory non-Hodgkin's lymphoma or acute lymphoblastic leukemia. Chemotherapy drugs, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Combining ifosfamide, carboplatin, and etoposide with rituximab may kill more cancer cells.
This laboratory study is looking into genes in samples from younger patients with relapsed acute lymphoblastic leukemia. Studying samples of tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors find better ways to treat cancer.
This clinical trial is studying biomarkers as a diagnostic tool in samples from younger patients with B-cell acute lymphoblastic leukemia. Finding specific biomarkers may help improve the treatment of patients with B-cell acute lymphoblastic leukemia
This laboratory study is looking at response or resistance to chemotherapy in young patients with acute lymphoblastic leukemia treated with methotrexate. Studying samples of tumor tissue in the laboratory from patients with cancer may help doctors learn more about changes that occur in DNA and drug resistance in patients.
This randomized phase III trial is studying tacrolimus, methotrexate, and sirolimus to see how well they work compared to tacrolimus and methotrexate in preventing graft-versus-host disease in young patients who are undergoing donor stem cell transplant for intermediate-risk or high-risk acute lymphoblastic leukemia in second complete remission and high risk acute lymphoblastic leukemia in first remission. Giving chemotherapy, such as thiotepa and cyclophosphamide, and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus, methotrexate, and sirolimus after the transplant may stop this from happening. It is not yet known whether tacrolimus and methotrexate are more effective with or without sirolimus in preventing graft-versus-host disease.
This randomized phase III trial is studying low-dose vincristine to see how well it works compared with high-dose vincristine when given together with different combination chemotherapy regimens in treating young patients with intermediate-risk relapsed B-cell acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) and giving the drugs in different ways and different doses may kill more cancer cells..
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This pilot, phase II trial studies the side effects of giving bortezomib together with combination chemotherapy and to see how well it works in treating young patients with relapsed acute lymphoblastic leukemia or lymphoblastic lymphoma. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with combination chemotherapy may kill more cancer cells.
This phase II trial studies giving rituximab before and after a donor peripheral blood stem cell transplant in patients with B-cell lymphoma that does not respond to treatment (refractory) or has come back after a period of improvement (relapsed). Monoclonal antibodies, such as rituximab, can interfere with the ability of cancer cells to grow and spread. Giving rituximab before and after a donor peripheral blood stem cell transplant may help stop cancer from coming back and may help keep the patient's immune system from rejecting the donor's stem cells.
This phase I trial is studying the side effects and best dose of oxaliplatin and etoposide in treating young patients with recurrent or refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may also help etoposide work better by making cancer cells more sensitive to the drug. Giving oxaliplatin together with etoposide may kill more cancer cells.
This trial will assess the feasibility of alpha/beta T-cell and B-cell depleted allogeneic hematopoietic cell transplantation (HCT) followed by blinatumomab therapy for high-risk B cell acute lymphoblastic leukemia (ALL) as a means of reducing rates of subsequent relapse and improving survival, while also minimizing treatment-related morbidity/ mortality and late effects. The conditioning regimens will be dependent on the patient's minimal residual disease (MRD) status prior to HCT using high throughput sequencing.
This phase I/II trial studies the side effects and best dose of alemtuzumab when given together with combination chemotherapy and to see how well it works in treating patients with untreated acute lymphoblastic leukemia. Monoclonal antibodies, such as alemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy also work in different ways to kill cancer cells or stop them from growing. Giving alemtuzumab together with combination chemotherapy may be a better way to block cancer growth.
This phase I/II trial is studying the side effects of biological therapy and to see how well it works in treating patients with advanced myelodysplastic syndrome, chronic myeloid leukemia, acute myeloid leukemia, or acute lymphoblastic leukemia. Biological therapies, including immunotherapy, can potentially be used to stimulate the immune system and stop cancer cells from growing. Immunotherapy given to patients who have undergone donor stem cell transplantation may be a way to eradicate remaining cancer cells
This is a phase I dose escalation study of DT2219ARL for the treatment of relapsed or refractory B-lineage leukemia and lymphoma. Patients will receive a single course of DT2219ARL as a 4 hour infusion on days 1, 3, 5, and 8. Weekly follow-up will continue through day 29, at which time a disease reassessment will be done. For patients in remission, follow-up will continue monthly until disease progression or start of a new treatment. Otherwise day 29 will be the final study visit if there is no ongoing toxicity. This phase I study will use Continual Reassessment Method (CRM) to establish a maximum tolerated dose (MTD) of DT2219ARL. Up to 3 dose levels will be tested with an additional dose level (-1) if dose level 1 proves too toxic. The goal of CRM is to identify the dose level which correspondences to a desired toxicity rate of 33% or less using grade 3 or 4 capillary leak syndrome and any grade 3 or greater toxicity attributed to DT2219ARL as the targeted toxicity (based on CTCAE version 4).
RATIONALE: Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances without harming normal cells. PURPOSE: Phase I/II trial to study the effectiveness of monoclonal antibody therapy in treating patients who have lymphoma or leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy consisting of methotrexate and cyclophosphamide in treating children who have stage III or stage IV non-Hodgkin's lymphoma or acute lymphoblastic leukemia.
RATIONALE: Collecting and storing samples of bone marrow and blood from patients with cancer to study in the laboratory may help doctors learn more about changes that may occur in DNA and identify biomarkers related to cancer. PURPOSE: This laboratory study is looking at lymphoblasts in young patients with high-risk acute lymphoblastic leukemia.