26 Clinical Trials for Various Conditions
This phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.
This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase I/II trial studies the side effects and best dose of melphalan when given together with carboplatin, mannitol, and sodium thiosulfate, and to see how well they work in treating patients with central nervous system (CNS) embryonal or germ cell tumors that is growing, spreading, or getting worse (progressive) or has come back (recurrent). Drugs used in chemotherapy, such as melphalan and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Osmotic blood-brain barrier disruption (BBBD) uses mannitol to open the blood vessels around the brain and allow cancer-killing substances to be carried directly to the brain. Sodium thiosulfate may help lessen or prevent hearing loss and toxicities in patients undergoing chemotherapy with carboplatin and BBBD. Giving melphalan together with carboplatin, mannitol, and sodium thiosulfate may be an effective treatment for recurrent or progressive CNS embryonal or germ cell tumors.
This phase I trial is studying the side effects and best dose of pazopanib hydrochloride in treating young patients with solid tumors that have relapsed or not responded to treatment. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase I trial is studying the side effects and best dose of sunitinib in treating young patients with refractory solid tumors. Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for their growth and by blocking blood flow to the tumor.
This phase I trial is studying the side effects and best dose of oxaliplatin when given together with leucovorin and fluorouracil in treating young patients with advanced solid tumors. Drugs used in chemotherapy, such as oxaliplatin, leucovorin, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
RATIONALE: Acupressure wristbands may prevent or reduce nausea and caused by chemotherapy. It is not yet known whether standard care is more effective with or without acupressure wristbands in controlling acute and delayed nausea. PURPOSE: This randomized phase III trial is studying how well acupressure wristbands work with or without standard care in controlling nausea in young patients receiving highly emetogenic chemotherapy.
RATIONALE: Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I clinical trial is studying the side effects and best dose of imetelstat sodium in treating young patients with refractory or recurrent solid tumors or lymphoma.
RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.
RATIONALE: Studying samples of cerebrospinal fluid from patients with cancer in the laboratory may help doctors identify biomarkers related to cancer. PURPOSE: This laboratory study is studying cerebrospinal fluid proteins and angiogenesis proteins in young patients with newly diagnosed central nervous system tumors.
RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, etoposide phosphate, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Mannitol may help chemotherapy work better by making it easier for these drugs to get to the tumor. Chemoprotective drugs, such as acetylcysteine and sodium thiosulfate, may protect normal cells from the side effects of chemotherapy. Giving acetylcysteine together with mannitol, combination chemotherapy, and sodium thiosulfate may be an effective treatment for malignant brain tumors. PURPOSE: This phase I trial is studying the side effects and best dose of acetylcysteine when given together with mannitol, combination chemotherapy, and sodium thiosulfate in treating children with malignant brain tumors.
RATIONALE: Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die. Giving a chemotherapy drug before surgery may shrink the tumor so that it is no longer present by conventional imaging and tumor markers from serum and cerebrospinal fluid. Radiation therapy uses high-energy x-rays to damage tumor cells. Peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Combining different types of therapy may kill more tumor cells. PURPOSE: This Phase II trial is studying how well neoadjuvant chemotherapy with or without surgery and with or without high dose chemotherapy and peripheral stem cell transplantation, can increase response rates prior to radiation therapy and increase progression free and overall surviving patients with newly diagnosed intracranial germ cell tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Chemotherapy combined with radiation therapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of temozolomide followed by radiation therapy in treating children who have newly diagnosed malignant central nervous system tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctors to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus peripheral stem cell transplantation in treating infants with malignant brain or spinal cord tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of cisplatin and etoposide in treating patients with CNS tumors.
RATIONALE: Genetic studies may help in understanding the genetic processes involved in the development of some types of cancer. PURPOSE: Genetic study to learn more about genes involved in the development of central nervous system tumors in young children.
The purpose of this study is to collect and store brain tissue samples and blood from children with brain cancer that will be tested in the laboratory. Collecting and storing samples of tumor tissue and blood from patients to test in the laboratory may help the study of cancer in the future.
RATIONALE: Germ cell tumors (GCT) are highly sensitive to chemotherapy such that even with metastatic disease at diagnosis, many patients can be cured. Patients who fall into the poor risk category or others who relapse can be successfully salvaged with high dose chemotherapy and autologous stem cell transplant (AuSCT). As in other diseases such as myeloma, sequential high dose chemotherapy and AuSCT may improve overall and disease free survival. PURPOSE: Because prior investigations in GCT suggest that a subset of high risk or relapsed patients may be cured with sequential cycles of high dose chemotherapy and AuSCT, we propose investigating how well non-cross resistant conditioning regimens work in treating patients with relapsed or high risk GCT.
RATIONALE: Gathering information about how often metabolic syndrome occurs in young survivors of childhood cancer may help doctors learn more about the disease. PURPOSE: This clinical trial is studying metabolic syndrome in survivors of childhood cancer and in their healthy sisters and brothers.
RATIONALE: Drugs used in chemotherapy, such as carboplatin and vincristine, work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining carboplatin and vincristine with radiation therapy followed by adjuvant chemotherapy may kill more tumor cells. PURPOSE: Randomized phase II trial to study the effectiveness of combination chemotherapy plus radiation therapy followed adjuvant chemotherapy in treating young patients who have newly diagnosed high-risk CNS embryonal tumors.
This study is a clinical trial to determine the safety of inoculating G207 (an experimental virus therapy) into a recurrent or refractory cerebellar brain tumor. The safety of combining G207 with a single low dose of radiation, designed to enhance virus replication, tumor cell killing, and an anti-tumor immune response, will also be tested. Funding Source- FDA OOPD
RATIONALE: In this study a combination of anti-cancer drugs (chemotherapy) is used to treat brain tumors in young children. Using chemotherapy gives the brain more time to develop before radiation is given. The chemotherapy in this study includes the drug methotrexate. This drug was an important part of the two clinical trials which resulted in the best survival results for children less than 3 years of age with medulloblastoma. Most patients treated on this trial will also receive radiation which is carefully targeted to the area of the tumor. This type of radiation (focal conformal or proton beam radiotherapy) may result in fewer problems with thinking and learning than radiation to the whole brain and spinal cord. PURPOSE: This clinical trial is studying how well giving combination chemotherapy together with radiation therapy works in treating young patients with newly diagnosed central nervous system tumors.
RATIONALE: Caspofungin acetate or amphotericin B liposomal may be effective in preventing or controlling fever and neutropenia caused by chemotherapy, bone marrow transplantation, or peripheral stem cell transplantation. It is not yet known whether caspofungin acetate or amphotericin B liposomal is more effective for treating these side effects. PURPOSE: Randomized phase III trial to compare the effectiveness of caspofungin acetate with that of amphotericin B liposomal in treating patients who have persistent fever and neutropenia after receiving anticancer therapy.