Treatment Trials

40 Clinical Trials for Various Conditions

Focus your search

WITHDRAWN
Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors
Description

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

Conditions
Acoustic SchwannomaAdult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Choroid Plexus TumorAdult CraniopharyngiomaAdult Diffuse AstrocytomaAdult EpendymoblastomaAdult EpendymomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Grade I MeningiomaAdult Grade II MeningiomaAdult MedulloblastomaAdult Meningeal HemangiopericytomaAdult Mixed GliomaAdult Myxopapillary EpendymomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult PineoblastomaAdult PineocytomaAdult Subependymal Giant Cell AstrocytomaAdult SubependymomaAdult Supratentorial Primitive Neuroectodermal Tumor (PNET)Childhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Infratentorial EpendymomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaChildhood MedulloepitheliomaChildhood Supratentorial EpendymomaMeningeal MelanocytomaNewly Diagnosed Childhood EpendymomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood MedulloblastomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilocytic AstrocytomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood PineoblastomaRecurrent Childhood Pleomorphic XanthoastrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood MedulloblastomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilocytic AstrocytomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood PineoblastomaUntreated Childhood Pleomorphic XanthoastrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Supratentorial Primitive Neuroectodermal TumorUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
TERMINATED
18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas
Description

To evaluate 18F-FDOPA PET obtained from PET/CT or PET/MRI imaging in patients with newly diagnosed or recurrent gliomas.

Conditions
Adult Anaplastic EpendymomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Diffuse AstrocytomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Mixed GliomaAdult OligodendrogliomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult Subependymal Giant Cell AstrocytomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligoastrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
COMPLETED
Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors
Description

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.

COMPLETED
ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors
Description

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

COMPLETED
Acupressure in Controlling Nausea in Young Patients Receiving Highly Emetogenic Chemotherapy
Description

RATIONALE: Acupressure wristbands may prevent or reduce nausea and caused by chemotherapy. It is not yet known whether standard care is more effective with or without acupressure wristbands in controlling acute and delayed nausea. PURPOSE: This randomized phase III trial is studying how well acupressure wristbands work with or without standard care in controlling nausea in young patients receiving highly emetogenic chemotherapy.

COMPLETED
Study of Tissue and Blood Samples From Patients With Low-Grade Glioma
Description

RATIONALE: Studying samples of tumor tissue and blood from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors predict how patients will respond to treatment. PURPOSE: This research study is looking at tissue and blood samples from patients with low-grade glioma.

WITHDRAWN
Studying Cerebrospinal Fluid Proteins and Angiogenesis Proteins in Young Patients With Newly Diagnosed Central Nervous System Tumors
Description

RATIONALE: Studying samples of cerebrospinal fluid from patients with cancer in the laboratory may help doctors identify biomarkers related to cancer. PURPOSE: This laboratory study is studying cerebrospinal fluid proteins and angiogenesis proteins in young patients with newly diagnosed central nervous system tumors.

TERMINATED
Dasatinib, Ifosfamide, Carboplatin, and Etoposide in Treating Young Patients With Metastatic or Recurrent Malignant Solid Tumors
Description

RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.

TERMINATED
MT2004-30: Tomotherapy for Solid Tumors
Description

RATIONALE: A peripheral blood stem cell transplant or bone marrow transplant using stem cells from the patient may be able to replace immune cells that were destroyed by chemotherapy and image-guided intensity-modulated radiation therapy used to kill tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of bone marrow radiation therapy followed by an autologous stem cell transplant in treating patients with high-risk or relapsed solid tumors.

COMPLETED
Vinblastine and Carboplatin in Treating Young Patients With Newly Diagnosed or Recurrent Low-Grade Glioma
Description

RATIONALE: Drugs used in chemotherapy, such as vinblastine and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of vinblastine when given together with carboplatin in treating young patients with newly diagnosed or recurrent low-grade glioma.

COMPLETED
Talabostat Combined With Temozolomide or Carboplatin in Treating Young Patients With Relapsed or Refractory Brain Tumors or Other Solid Tumors
Description

RATIONALE: Talabostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving talabostat together with temozolomide or carboplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of talabostat when given together with temozolomide or carboplatin in treating young patients with relapsed or refractory brain tumors or other solid tumors.

COMPLETED
Radiation Therapy in Treating Young Patients With Gliomas
Description

RATIONALE: Specialized radiation therapy that delivers radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. PURPOSE: This phase II trial is studying how well radiation therapy works in treating young patients with gliomas.

TERMINATED
Acetylcysteine, Mannitol, Combination Chemotherapy, and Sodium Thiosulfate in Treating Children With Malignant Brain Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, etoposide phosphate, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Mannitol may help chemotherapy work better by making it easier for these drugs to get to the tumor. Chemoprotective drugs, such as acetylcysteine and sodium thiosulfate, may protect normal cells from the side effects of chemotherapy. Giving acetylcysteine together with mannitol, combination chemotherapy, and sodium thiosulfate may be an effective treatment for malignant brain tumors. PURPOSE: This phase I trial is studying the side effects and best dose of acetylcysteine when given together with mannitol, combination chemotherapy, and sodium thiosulfate in treating children with malignant brain tumors.

COMPLETED
Temozolomide, Vincristine, and Irinotecan in Treating Young Patients With Refractory Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as temozolomide, vincristine, and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of irinotecan when given together with temozolomide and vincristine in treating young patients with refractory solid tumors.

COMPLETED
Erlotinib and Radiation Therapy in Treating Young Patients With Newly Diagnosed Glioma
Description

RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. It may also make tumor cells more sensitive to radiation therapy. Giving radiation therapy together with erlotinib may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of erlotinib when given together with radiation therapy and to see how well they work in treating young patients with newly diagnosed glioma.

TERMINATED
Topotecan in Treating Young Patients With Neoplastic Meningitis Due to Leukemia, Lymphoma, or Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as topotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I trial is studying the side effects, best way to give, and best dose of topotecan when given by intraventricular infusion in treating young patients with neoplastic meningitis due to leukemia, lymphoma, or solid tumors.

COMPLETED
Valproic Acid in Treating Young Patients With Recurrent or Refractory Solid Tumors or CNS Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as valproic acid, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Valproic acid may also stop the growth of solid tumors or CNS tumors by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of valproic acid in treating patients with recurrent or refractory solid tumors or CNS tumors.

COMPLETED
VNP40101M in Treating Young Patients With Recurrent, Progressive, or Refractory Primary Brain Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as VNP40101M, work in different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects and best dose of VNP40101M in treating young patients with recurrent, progressive, or refractory primary brain tumors.

COMPLETED
Carboplatin, Vincristine, and Temozolomide in Treating Children With Progressive and/or Symptomatic Low-Grade Glioma
Description

RATIONALE: Drugs used in chemotherapy, such as carboplatin, vincristine, and temozolomide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving more than one drug may kill more tumor cells. PURPOSE: This pilot study is studying giving carboplatin and vincristine together with temozolomide in treating children with progressive and/or symptomatic low-grade glioma.

COMPLETED
Cyproheptadine and Megestrol in Preventing Weight Loss in Children With Cachexia Caused By Cancer or Cancer Treatment
Description

RATIONALE: Cyproheptadine and megestrol may improve appetite and help prevent weight loss in children with cancer. PURPOSE: This phase II trial is studying how well cyproheptadine and megestrol work in improving appetite and preventing weight loss in children with cachexia caused by cancer or cancer treatment.

COMPLETED
Lobradimil and Carboplatin in Treating Children With Brain Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Lobradimil may increase the effectiveness of a chemotherapy drug by making tumor cells more sensitive to the drug. PURPOSE: Phase II trial to study the effectiveness of carboplatin and lobradimil in treating children with brain tumors that have not responded to previous treatment.

COMPLETED
Genetic Study in Patients Receiving Treatment for Hodgkin's Disease or Childhood Brain Tumor
Description

RATIONALE: Determination of genetic markers for leukemia or non-Hodgkin's lymphoma that is secondary to Hodgkin's disease and childhood brain tumors may help doctors to identify patients who are at risk for these cancers. PURPOSE: Clinical trial to determine the presence of certain genes in patients who are receiving treatment for Hodgkin's disease or childhood brain tumors.

COMPLETED
Temozolomide Followed by Radiation Therapy in Treating Children With Newly Diagnosed Malignant CNS Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Chemotherapy combined with radiation therapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of temozolomide followed by radiation therapy in treating children who have newly diagnosed malignant central nervous system tumors.

COMPLETED
Temozolomide Plus Peripheral Stem Cell Transplantation in Treating Children With Newly Diagnosed Malignant Glioma or Recurrent CNS or Other Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of temozolomide when given with peripheral stem cell transplantation and to see how well they work in treating children with newly diagnosed malignant glioma or recurrent CNS tumors or other solid tumors.