21 Clinical Trials for Various Conditions
This partially randomized phase II/III trial studies how well, in combination with surgery, cisplatin and combination chemotherapy works in treating children and young adults with hepatoblastoma or hepatocellular carcinoma. Drugs used in chemotherapy, such as cisplatin, doxorubicin, fluorouracil, vincristine sulfate, carboplatin, etoposide, irinotecan, sorafenib, gemcitabine and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving combination chemotherapy may kill more tumor cells than one type of chemotherapy alone.
RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.
RATIONALE: Sodium thiosulfate may reduce or prevent hearing loss in young patients receiving cisplatin for cancer. It is not yet known whether sodium thiosulfate is more effective than no additional treatment in preventing hearing loss. PURPOSE: This randomized phase III trial is studying sodium thiosulfate to see how well it works in preventing hearing loss in young patients receiving cisplatin for newly diagnosed germ cell tumor, hepatoblastoma, medulloblastoma, neuroblastoma, osteosarcoma, or other malignancy.
RATIONALE: Talabostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving talabostat together with temozolomide or carboplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of talabostat when given together with temozolomide or carboplatin in treating young patients with relapsed or refractory brain tumors or other solid tumors.
This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.
This phase II trial is studying how well oxaliplatin works in treating young patients with recurrent solid tumors that have not responded to previous treatment. Drugs used in chemotherapy, such as oxaliplatin, work in different ways to stop tumor cells from dividing so they stop growing or die.
RATIONALE: Drugs used in chemotherapy, such as ABT-751, work in different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects of ABT-751 in treating young patients with refractory solid tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects and best dose of ixabepilone in treating young patients with relapsed or refractory solid tumors or leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of arsenic trioxide in treating children who have advanced neuroblastoma or other solid tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining temozolomide and O6-benzylguanine in treating children who have solid tumors that have not responded to previous therapy.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of liposomal doxorubicin in treating children who have refractory solid tumors.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of flavopiridol in treating children who have relapsed or refractory solid tumors or lymphoma.
RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy used to kill tumor cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of cyclophosphamide when given together with combination chemotherapy and a peripheral stem cell transplant in treating patients with malignant solid tumors.
RATIONALE: Taking part in a clinical trial may help children with cancer receive more effective treatment. PURPOSE: Determine why patients who are eligible for protocols made available through the Pediatric Oncology Group do not enroll in them, and develop strategies to increase enrollment on these clinical trials.
The purpose of this retrospective and prospective project is to understand the molecular and genetic basis of liver cancer of childhood. Understanding the molecular and genetic bases of liver cancers can offer a better classification based on tumor biology, mechanisms and predisposition.
The purpose of this study is to test the feasibility (ability to be done) of experimental technologies to determine a tumor's molecular makeup. This technology includes a genomic report based on DNA exomes and RNA sequencing that will be used to discover new ways to understand cancers and potentially predict the best treatments for patients with cancer in the future.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Bone marrow transplantation may allow doctors to give higher doses of chemotherapy and kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy with thiotepa, carboplatin, and topotecan followed by bone marrow transplantation in treating patients who have metastatic or progressive rare cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Chemoprotective drugs such as amifostine may protect normal cells from the side effects of high-dose chemotherapy. PURPOSE: Phase I trial to study the effectiveness of amifostine in protecting from the side effects of peripheral stem cell transplantation in treating patients who have high-risk or relapsed solid tumors.
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Cryoablation kills cancer cells by freezing them. Giving chemotherapy together with cryoablation may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving cyclophosphamide together with cryoablation works in treating patients with advanced or metastatic epithelial cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Colony-stimulating factors such as thrombopoietin and G-CSF may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of chemotherapy. PURPOSE: Phase I trial to study the effectiveness of colony-stimulating factors in treating children who have recurrent or refractory solid tumors and who are receiving chemotherapy.
This research study is creating a way to collect and store specimens and information from participants who may be at an increased risk of developing cancer, or has been diagnosed with an early phase of a cancer or a family member who has a family member with a precursor condition for cancer. * The objective of this study is to identify exposures as well as clinical, molecular, and pathological changes that can be used to predict early development of cancer, malignant transformation, and risks of progression to symptomatic cancer that can ultimately be fatal. * The ultimate goal is to identify novel markers of early detection and risk stratification to drive potential therapeutic approaches to intercept progression to cancer.