7 Clinical Trials for Various Conditions
Epstein-Barr virus (EBV) is a member of the human herpes virus family that infects more than 95 percent of the U.S. population. Most infections occur in childhood and cause no symptoms; in adolescents and adults, EBV often causes infectious mononucleosis. It has also been associated with certain forms of cancer. Chronic Epstein-Barr virus (CAEBV) is a rare disease, primarily of children and young adults, that leads to life-threatening infections. This study seeks to identify genetic mutations responsible for CAEBV. A secondary goal is to learn more about the natural history of CAEBV. The study will examine blood and tissue samples from up to 50 patients (age 3 and above) with CAEBV and up to 150 of their relatives (age 1 and above). Autopsy samples may be included in the study. Up to 300 anonymous blood samples from the NIH Clinical Center Blood Transfusion Medicine will also be examined for comparison. No more than 450 milligrams (30 tablespoons) of blood per 8 weeks will be drawn from adult patients, and no more than 7 milliliters per kilogram of blood per 8 weeks will be drawn from patients under age 18. Local health care providers will refer patients to the study and will obtain the samples. Some patients may also be seen at the NIH Clinical Center. Those patients will have a full medical history and physical examination, along with chest X-ray, blood counts, blood chemistry, EBV serologies, and viral load. Other tests, such as CT scan or MRI, may be performed if medically indicated. Patients will be asked to undergo leukapheresis. In vitro tests on the blood or tissue samples will include analysis for proteins or genes that are involved in the immune response; cloning of portions of patient DNA; transformation of B cells with EBV; measurement of the ability of patient blood cells to kill EBV-infected cells; determination of lymphocyte subsets; and determination of antibodies to EBV or other herpes viruses. If a genetic cause for CAEBV is found, the investigators will be available to discuss the results with patients in person or by telephone. Genetic indications of risk for other diseases will also be discussed with patients. ...
Patients with medical conditions requiring allogeneic hematopoietic cell transplantation (allo-HCT) are at risk of developing a condition called graft versus host disease (GvHD) which carries a high morbidity and mortality. This is a phase I/II study that will test the safety and efficacy of hematopoietic cell transplantation (HCT) with ex-vivo T cell receptor Alpha/Beta+ and CD19 depletion to treat patients' underlying condition. This process is expected to substantially decrease the risk of GvHD thus allowing for the elimination of immunosuppressive therapy post-transplant. The study will use blood stem/progenitor cells collected from the peripheral blood of parent or other half-matched (haploidentical) family member donor. The procedure will be performed using CliniMACS® TCRα/β-Biotin System which is considered investigational.
HLH, HLH-related disorders, Chronic Granulomatous (CGD), HIGM1, Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX) and severe LAD-I represent primary immune disorders that are typically fatal without Hematopoietic Cell Transplant (HCT). However, transplant is often complicated by inflammation, infection and other co-morbidities. In addition, these disorders have been shown to be cured with partial chimerism, making them an ideal target for the use of reduced intensity approaches, where a portion of patients may not achieve full donor chimerism, but instead achieve stable mixed chimerism. Reduced-intensity conditioning strategies have demonstrated improved survival with decreased Treatment Related Mortality (TRM) in institutional series for patients with HLH (Cooper et al., 2006; Marsh et al., 2010; Marsh et al., 2011). However, graft loss and unstable chimerism remain challenges. An institutional case series from Cincinnati Children's Hospital demonstrated full or high-level chimerism and improved durable engraftment using intermediate (Day -14) timing alemtuzumab (Marsh et al., 2013b). This study aims to test the efficacy of the Intermediate RIC strategy in a prospective multi-center study including HLH as well as other primary immunodeficiencies where allogeneic transplant with RIC has been shown to be feasible and stable chimerism is curative.
The subject has a type of cancer or lymph gland disease associated with a virus called Epstein Barr Virus (EBV), which has come back, is at risk of coming back, or has not gone away after standard treatments. This research study uses special immune system cells called LMP, BARF-1 and EBNA1- specific cytotoxic T lymphocytes (MABEL CTLs). Some patients with Lymphoma (such as Hodgkin (HD) or non-Hodgkin Lymphoma (NHL)), T/NK-lymphoproliferative disease, or CAEBV, or solid tumors such as nasopharyngeal carcinoma (NPC), smooth muscle tumors, and leiomyosarcomas show signs of a virus called EBV before or at the time of their diagnosis. EBV causes mononucleosis or glandular fever ("mono" or the "kissing disease"). EBV is found in the cancer cells of up to half the patients with HD and NHL, suggesting that it may play a role in causing Lymphoma. The cancer cells (in lymphoma) and some immune system cells (in CAEBV) infected by EBV are able to hide from the body's immune system and escape destruction. EBV is also found in the majority of NPC and smooth muscle tumors, and some leiomyosarcomas. We want to see if special white blood cells (MABEL CTLs) that have been trained to kill EBV infected cells can survive in your blood and affect the tumor. In previous studies, EBV CTLs were generated from the blood of the patient, which was often difficult if the patient had recently received chemotherapy. Also, it took up to 1-2 months to make the cells, which is not practical when a patient needs more urgent treatment. To address these issues, the MABEL CTLs were made in the lab in a simpler, faster, and safer way. The MABEL CTLs will still see LMP proteins but also two other EBV proteins called EBNA-1 and BARF. To ensure these cells are available for use in patients in urgent clinical need, we have generated MABEL CTLs from the blood of healthy donors and created a bank of these cells, which are frozen until ready for use. We have previously successfully used frozen T cells from healthy donors to treat EBV lymphoma and virus infections and we now have improved our production method to make it faster. In this study, we want to find out if we can use banked MABEL CTLs to treat HD, NHL, T/NK-lymphoproliferative disease, CAEBV, NPC, smooth muscle tumors or leiomyosarcoma. We will search the bank to find a MABEL CTL line that is a partial match with the subject. MABEL CTLs are investigational and not approved by the Food and Drug Administration.
Patients are being asked to participate in this study because they will be receiving a stem cell transplant as treatment for their disease. As part of the stem cell transplant, they will be given very strong doses of chemotherapy, which will kill off all their existing stem cells. Stem cells are created in the bone marrow. They grow into different types of blood cells that we need, including red blood cells, white blood cells, and platelets. We have identified a close relative of the patients whose stem cells are not a perfect match for the patient, but can be used. This type of transplant is called "allogeneic", meaning that the cells come from a donor. With this type of donor who is not a perfect match, there is typically an increased risk of developing graft-versus-host disease (GvHD) and a longer delay in the recovery of the immune system. GvHD is a serious and sometimes fatal side effect of stem cell transplant. GvHD occurs when the new donor cells recognize that the body tissues of the patient are different from those of the donor. In the laboratory, we have seen that cells made to carry a gene called iCasp9 can be killed when they encounter a specific drug called AP1903. To get the iCasp9 into the T cells, we insert it using a virus called a retrovirus that has been made for this study. The drug (AP1903) that will be used to "activate" the iCasp9 is an experimental drug that has been tested in a study in normal donors, with no bad side effects. We hope we can use this drug to kill the T cells. Other drugs that kill or damage T cells have helped GvHD in many studies. However we do not yet know whether AP1903 will kill T cells in humans, even though it has worked in our experimental studies on human cells in animals. Nor do we know whether killing the T cells will help the GvHD. Because of this uncertainty, patients who develop significant GvHD will also receive standard therapy for this complication, in addition to the experimental drug. We hope that having this safety switch in the T cells will let us give higher doses of T cells that will make the immune system recover faster. These specially treated "suicide gene" T cells are an investigational product not approved by the Food and Drug Administration.
Patients have a type of a lymph node cancer called lymphoma, a tumor of the nasal passages called nasopharyngeal carcinoma (NPC), a tumor of a particular type of muscle called leiomyosarcoma (LMS) or a condition called severe chronic active EBV (SCAEBV) syndrome. The disease has come back, may come back or has not gone away after treatment. This voluntary research study uses special immune system cells called LMP-specific cytotoxic T lymphocytes, a new experimental therapy. Some patients with these diseases show evidence of infection with the virus that causes infectious mononucleosis (called Epstein-Barr virus, or EBV) before or at the time of their diagnosis. EBV is found in the cancer cells of up to half of the patients with lymphomas, and in some cases of NPC and LMS, suggesting that it may play a role in causing these diseases. Those cancer cells (as well as some B cells in SCAEBV) that are infected by EBV are able to hide from the body's immune system and escape destruction. We want to see if special white blood cells, called T cells, that have been trained to kill cells infected by EBV can survive in the blood and affect the tumor. This treatment with specially trained T cells has had activity against these viruses when the cells are made from patients with those diseases (or, after bone marrow transplant, from the patient's transplant donor). However, sometimes it is not possible to grow these cells; other times, it may take 2 to 3 months to make the cells, which may be too long when one has an active tumor. We are therefore asking if subjects would like to participate in this study, which tests if blood cells from a donor that is a partial match with the subject (or the transplant donor) that have been grown in the way described above can survive in the blood and affect the disease. These LMP-specific CTLs are an investigational product not approved by the Food and Drug Administration.
The purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.