89 Clinical Trials for Various Conditions
Multi-site, prospective performance study to determine equivalency between the investigational CLPD Limited Panel on the FACSLyric system versus the final clinical diagnosis.
The purpose of this study is to determine the safety and maximum tolerated dose of GRN163L in treating patients with refractory or relapsed chronic lymphoproliferative disease.
Multi-site, prospective performance study to determine equivalency between the investigational CLPD Full Panel on the FACSLyric system versus the final clinical diagnosis.
The purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.
This is a multicenter, first-in-human, Phase 1/2 study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and anti-tumor activity of DR-01 in adult patients with large granular lymphocytic leukemia or cytotoxic lymphomas
This study uses a new investigational (not yet approved by the FDA for widespread use) drug called ZIO-101, an organic arsenical. You must be diagnosed to have relapsed/refractory leukemia or lymphoma (blood cancer) and have tried other standard therapies. This study is designed to determine whether ZIO-101 may be given safely. The study will also test whether ZIO-101 helps to treat blood cancer. We anticipate that approximately 22 to 35 patients will take part in this study. Arsenic has been used as a medicinal agent for centuries in many different cultures. Most recently in the United States, an inorganic arsenic compound was approved by the FDA for the treatment of patients with relapsed acute promyelocytic leukemia (APL). However, use of inorganic arsenic is limited by a narrow range of activity and systemic toxicity, most notably of the cardiac system. ZIO-101 is an organic arsenic derivative. In vitro testing in both the National Cancer Institute (NCI) cancer cell panel and in vivo testing in a leukemia animal model demonstrated substantial activity of SGLU against hematologic cancers. In vitro testing of SGLU using the NCI human cancer cell panel also detected activity against lung, colon and brain cancers, melanoma, and ovary and kidney cancers. Moderate activity was seen against breast and prostate cancers cells. Data suggest that organic arsenic generates reactive oxygen species in the cells to induce apoptosis and cell cycle arrest.
This study will examine the use of the humanized Mik-beta-1 (Hu-Mik-beta1) antibody in patients with T-cell large granular lymphocytic leukemia (T-LGL). Patients with T-LGL often have reduced white blood cells, red blood cells, and platelets, and increased numbers of abnormal cells called large granular lymphocytes (LGLs). Patients may have recurrent infections, anemia, or abnormal bleeding. Hu-Mik-beta1 attaches to LGL cells and blocks the action of growth factors called interleukins that stimulate LGL growth. Blocking these interleukins may stop T-LGL leukemia cells from growing. This study will determine the dose and frequency of treatment with Hu-Mik-(SqrRoot) 1 that can safely be given to patients to coat the surface of their leukemic cells with antibody, determine how long the antibody lasts in the blood after injection, and examine the side effects and possible benefits of the drug in these patients. Patients age 18 or older with T-LGL may be eligible for this study. Candidates will be screened with a medical history and physical examination, review of pathology studies, skin biopsy, evaluation of rheumatoid arthritis if present, chest x-ray, computerized tomography (CT) scans and other imaging studies as needed, bone marrow biopsy, and blood and urine tests. Participants will receive a single dose of Hu-Mik-beta1 by a 90-minute infusion through a vein. Groups of patients will be treated with increasing doses (0.5, 1.0, and 1.5 mg/kg) of the antibody. Patients who develop serious drug side effects are taken off the study. The treatment requires a 3- to 4-day hospital stay. In addition to Hu-Mik-(SqrRoot) 1 treatment, patients will undergo the following tests and procedures: * Collection of blood for 8 days following the dose of Hu-Mik-beta1 to measure blood levels of the antibody. * Follow-up visits of 1 to 2 days at 22, 29, and 43 days after the dose of the antibody and then every 3 months for a total of 9 months. * Bone marrow aspirate and biopsy if one has not been done within 6 weeks before entering the study, and a repeat biopsy if complete remission of T-LGL is achieved after completing treatment. For the biopsy, an area of the hip is numbed and a special needle is used to draw bone marrow from the hipbone. * Imaging studies, such as chest x-ray and CT scan of the body after completing treatment if the screening scans showed abnormalities due to the T-LGL leukemia. * Lymph node biopsy in individuals with enlarged superficial lymph nodes due to T-LGL leukemia to see if the treatment is reaching the leukemia in the lymph nodes. There may or may not be a direct benefit from participating in this study. However, the results may help in the treatment of future patients.
RATIONALE: Drugs used in chemotherapy, such as VNP40101M, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I/II trial is studying the side effects and best dose of VNP40101M and to see how well it works in treating patients with Richter syndrome or refractory or relapsed chronic lymphocytic leukemia or other lymphoproliferative disorders.
This trial will determine the safety and tolerability of Pacritinib in patients with relapsed/refractory lymphoproliferative disorders.
This study is designed to determine the recommended phase 2 dose (RP2D), and the safety, and efficacy of durvalumab as monotherapy and when given in combination with lenalidomide and rituximab; ibrutinib; or bendamustine and rituximab at the RP2D in adults with lymphoma or chronic lymphocytic leukemia (CLL).
Background: Adult T-cell leukemia (ATL) is a rare blood cancer. Researchers want to see if a combination of two drugs - recombinant human interleukin 15 (rhIL-15) and alemtuzumab - is a better treatment for ATL. Objectives: To test if giving rhIL-15 combined with alemtuzumab improves the outcome of therapy for ATL. Also, to determine the safe dose of this combination and identify side effects and effects on the immune system. Eligibility: Adults 18 years and older with chronic or acute ATL who have not been helped by other treatments. Design: Participants will be screened with tests that are mostly part of their usual cancer care. They will sign a separate consent form for this. Weeks 1 and 2: Participants will have a total of 10 visits. They will: * Get rhIL-15 under the skin by needle. * Have a physical exam and vital signs measured. * Give blood samples. * Answer questions about their health and their medicines. Week 3: Participants will stay in the clinic. They will: * Get alemtuzumab infusions in a vein through a small catheter on days 1, 2, 3, and 5. * Take medicines to decrease side effects. * Have a computed tomography (CT) scan to evaluate the treatment. * Have a physical exam and vital signs measured. * Give blood samples. Answer questions about their health and medicines. Weeks 4, 5, and 6 will repeat week 3, without the CT scan. Some patients will just have outpatient visits these weeks. After treatment, participants will have follow-up visits every few months for up to 2 years. At these visits, participants will give blood samples and have CT scans.
This phase I trial studies the side effects and best dose of cellular immunotherapy following chemotherapy in treating patients with non-Hodgkin lymphomas, chronic lymphocytic leukemia, or B-cell prolymphocytic leukemia that has come back. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
The purpose of this study is to compare the efficacy of ponatinib and imatinib in patients with newly diagnosed chronic myeloid leukemia (CML) in the chronic phase.
RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.
Blood and lymph node cancers can begin in either the lymphatic tissues (as in the case of lymphoma) or in the bone marrow (as with leukemia and myeloma), and they all are involved with the uncontrolled growth of white blood cells. There are many subtypes of these cancers, e.g., chronic lymphocytic leukemia and non-Hodgkin lymphoma. Since there is evidence that these cancers cluster in families, this study aims to understand how genetics and environmental exposures contribute to the development of these cancers.
This is an open-label, dose-escalation study to determine the tolerability, safety profile, and antitumor activity of SGN-40 in patients with CLL. All patients will receive dose escalation during the first two weeks regardless of cohort designation.
RATIONALE: When irradiated lymphocytes from a donor are infused into the patient they may help the patient's immune system kill cancer cells. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving irradiated donor lymphocytes together with rituximab may kill more cancer cells. PURPOSE: This clinical trial is studying the side effects and how well giving irradiated donor lymphocytes together with rituximab works in treating patients with relapsed or refractory lymphoproliferative disease.
This phase I trial studies the side effects, best way to give, and the best dose of alvocidib when given together with fludarabine phosphate and rituximab in treating patients with previously untreated or relapsed lymphoproliferative disorders or mantle cell lymphoma. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy such as alvocidib and fludarabine use different ways to stop cancer cells from dividing so they stop growing or die. Combining monoclonal antibody therapy with chemotherapy may kill more cancer cells.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of ixabepilone in treating patients who have relapsed or refractory lymphoproliferative disorders.
Epstein-Barr virus (EBV) is a member of the human herpes virus family that infects more than 95 percent of the U.S. population. Most infections occur in childhood and cause no symptoms; in adolescents and adults, EBV often causes infectious mononucleosis. It has also been associated with certain forms of cancer. Chronic Epstein-Barr virus (CAEBV) is a rare disease, primarily of children and young adults, that leads to life-threatening infections. This study seeks to identify genetic mutations responsible for CAEBV. A secondary goal is to learn more about the natural history of CAEBV. The study will examine blood and tissue samples from up to 50 patients (age 3 and above) with CAEBV and up to 150 of their relatives (age 1 and above). Autopsy samples may be included in the study. Up to 300 anonymous blood samples from the NIH Clinical Center Blood Transfusion Medicine will also be examined for comparison. No more than 450 milligrams (30 tablespoons) of blood per 8 weeks will be drawn from adult patients, and no more than 7 milliliters per kilogram of blood per 8 weeks will be drawn from patients under age 18. Local health care providers will refer patients to the study and will obtain the samples. Some patients may also be seen at the NIH Clinical Center. Those patients will have a full medical history and physical examination, along with chest X-ray, blood counts, blood chemistry, EBV serologies, and viral load. Other tests, such as CT scan or MRI, may be performed if medically indicated. Patients will be asked to undergo leukapheresis. In vitro tests on the blood or tissue samples will include analysis for proteins or genes that are involved in the immune response; cloning of portions of patient DNA; transformation of B cells with EBV; measurement of the ability of patient blood cells to kill EBV-infected cells; determination of lymphocyte subsets; and determination of antibodies to EBV or other herpes viruses. If a genetic cause for CAEBV is found, the investigators will be available to discuss the results with patients in person or by telephone. Genetic indications of risk for other diseases will also be discussed with patients. ...
This is a dose-escalation study to determine the maximum tolerated dose and toxic effects of clofarabine in patients with chronic lymphocytic leukemia and other acute leukemias. Clofarabine is a synthesized hybrid nucleoside analog, which is believed to possess the better qualities of fludarabine and chlorodeoxyadenosine, the 2 most active agents against lymphoproliferative disorders. Thus, it is hoped that this drug will be more active and less toxic than similar drugs.
RATIONALE: Peripheral blood lymphocyte therapy may be effective in the treatment and prevention of Epstein-Barr virus infection following transplantation. PURPOSE: Phase II trial to study the effectiveness of peripheral blood lymphocyte therapy in treating and preventing lymphoproliferative disorders in patients who have Epstein-Barr virus infection following transplantation.
T Cell Large Granular Lymphocyte (T-LGL) Lymphoproliferative Disorders are a heterogeneous group of uncommon diseases which may involve a polyclonal or a monoclonal T cell population, which bear characteristic surface markers corresponding to activated cytotoxic (CD3+, CD8+) lymphocytes. They are often associated with quite severe neutropenia, anemia, and thrombocytopenia which may be life-threatening. There is some evidence that the abnormal cytotoxic lymphocyte population may cause the cytopenias by suppressing hematopoiesis, although the mechanism is unclear. Case reports suggest that immunosuppressive therapy directed toward T cells may reverse the cytopenia. This pilot study involving up to 25 patients evaluates the clinical response to cyclosporine, an immunosuppressive drug, and seeks to elucidate the mechanism underlying the cytopenia.
Targeted drug therapies have greatly improved outcomes for patients with relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma. However, single drug therapies have limitations, therefore, the current study is evaluating a novel oral combination of targeted drugs as a way of overcoming these limitations. This study will determine the efficacy of the triple combination therapy, DTRM-555, in patients with R/R CLL or R/R non-Hodgkin's lymphoma.
This is an open-label, multicenter, Phase II study to investigate the efficacy and safety of venetoclax in combination with Rituximab/hyaluronidase human in participants with relapsed or refractory chronic lymphocytic leukemia (CLL).
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This pilot phase II trial studies how well giving vorinostat, tacrolimus, and methotrexate works in preventing graft-versus-host disease (GVHD) after stem cell transplant in patients with hematological malignancies. Vorinostat, tacrolimus, and methotrexate may be an effective treatment for GVHD caused by a bone marrow transplant.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening