301 Clinical Trials for Various Conditions
To determine the safety and efficacy of decitabine in patients with Philadelphia chromosome-positive chronic myelogenous leukemia accelerated phase that were previously treated with imatinib mesylate (STI 571) and became resistant/refractory or were found to be intolerant to the drug.
The study is a Phase II clinical trial. Patients will receive intensity-modulated total marrow irradiation (TMI) at a dose of 9 Gray (Gy) with standard myeloablative fludarabine intravenous (IV) and targeted busulfan (FluBu4) conditioning prior to allogeneic hematopoietic stem cell transplant (HSCT). Graft-versus-host disease (GVHD) prophylaxis will include Cyclophosphamide on Day +3 and +4, tacrolimus, and mycophenolate mofetil.
This is a single arm pilot study for patients with hematologic malignancies receiving unrelated or haploidentical related mobilized peripheral stem cells (PSCs) using the CliniMACS system for alpha/beta T cell depletion plus CD19+ B cell depletion with individualized ALC-based dosing of ATG to study impact on engraftment, GVHD, and disease free survival
This is a first in children prospective study of allogeneic hematopoietic cell transplant using a centrally manufactured engineered donor graft (Orca-Q). The study will assess safety and efficacy of Orca-Q in pediatric patients with hematologic malignancies.
The purpose of this study is to determine the recommended phase 2 dose of the drug Vorinostat in children, adolescents and young adults following allogeneic blood or marrow transplant (BMT) and determine whether the addition of Vorinostat to the standard graft versus host disease (GVHD) prophylaxis will reduce the incidence of GVHD.
This study evaluates the use of ETC-1907206 in combination with dasatinib in certain types of blood cancers. The first phase of the study (1A) is designed to find the highest tolerated dose of ETC-1907206, while the second phase (1B) will assess the safety and tolerability of the recommended dose of ETC-1907206. ETC-1907206 has been designed to block the activity of an enzyme of the body known as Mnk kinase, which is thought to be involved in the development of a variety of cancers.
Objectives: 1. To evaluate disease free survival after Campath 1H-based in vivo T-cell depletion and non-myelo-ablative ablative stem cell transplantation in patients with hematologic malignancies. 2. To evaluate the incidence and severity of acute and chronic GVHD after Campath 1H-based in vivo T-cell depletion, in patients with hematologic malignancies undergoing non-myelo-ablative stem cell transplantation. 3. To evaluate engraftment and chimerism after Campath 1H-based in vivo T-cell depletion and non-myelo-ablative ablative stem cell transplantation in patients with hematologic malignancies.
The purpose of this clinical research study is to learn if BMS-354825 will have activity, defined by hematologic response, in subjects who have accelerated phase chronic myeloid leukemia (CML) who are resistant to or intolerant to imatinib mesylate. The safety of this treatment will also be studied.
The goal of this clinical research study is to learn if ponatinib can help to control Chronic Myeloid Leukemia (CML) in accelerated phase. The safety of this drug will also be studied. Ponatinib is designed to block the function of BCR-ABL, which is the abnormal protein responsible for causing leukemia in certain cells. Ponatinib may cause a blood clot to form in an artery or in a vein. Depending on the location of the clot, this could cause a heart attack, a stroke, severe damage to other tissue, or death. A blood clot may occur within 2 weeks after you start taking the drug. About 25% (1 in 4) of patients taking the drug form an abnormal clot. Blood clots can occur in patients that do not have other known risk factors for forming clots. If you develop a blood clot, you will need to stop taking ponatinib. In some cases, emergency surgery could be needed to remove the clot and restore blood flow.
This is a Phase I study designed to determine the MTD and assess the toxicity associated with clofarabine followed by fractionated cyclophosphamide in patients \> 1 year of age or \< 21 years of age with relapsed or refractory acute leukemias. There will be 25 to 35 patients enrolled. Cohorts of 3 to 6 patients each will receive escalated doses of clofarabine followed by fractionated cyclophosphamide until the MTD is reached. There will be no intra-patient dose escalation. Single-agent cyclophosphamide will be administered by 2-hour IVI on Day 0 of cycle 1. On Days 1, 2, and 3 and Days 8, 9, and 10 clofarabine will be administered by IVI 2 hours before each dose of cyclophosphamide (see the treatment schema below). A cycle is defined as 28 days.
The purpose of this clinical research study is to provide dasatinib treatment to patients with advanced chronic myelogenous leukemia (CML) or Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL) who no longer can tolerate treatment with imatinib. The safety of the treatment will also be studied.
This study will evaluate the efficacy and safety of LBH589B in adult patients with chronic myeloid leukemia who are in accelerated phase or blast phase (blast crisis) with resistant disease following treatment with at least two BCR-ABL tyrosine kinase inhibitors
This is a phase III study of BMS-354825 in subjects with chronic myelogenous leukemia in accelerated phase, or in myeloid or lymphoid blast phase or with Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia who are resistant or intolerant to imatinib mesylate (Gleevec).
This will be an open label, multi-center study of up to 77 patients with CML in chronic, accelerated or blast phase who have developed resistance to or have failed previous treatment with Gleevec (imatinib mesylate). Because these patients may still be sensitive to Gleevec, adding Homoharringtonine may restore a response to Gleevec or the combined treatment may promote a better response than using Gleevec alone.
The purpose of this clinical research study is to understand the safety and efficacy of BMS-354825 in patients with chronic, accelerated, or blast phase chronic myelogenous leukemia (CML) or Philadelphia positive acute lymphoblastic leukemia (ALL) who are resistant to or intolerant of imatinib mesylate (Gleevec).
The goal of this research is to see if giving the drug SCH66336 by mouth can improve the disease in patients with chronic or accelerated phase CML. The safety of this treatment will also be studied.
This phase II trial studies how well the combination of decitabine, venetoclax, and ponatinib work for the treatment of Philadelphia chromosome-positive acute myeloid leukemia or myeloid blast phase or accelerated phase chronic myelogenous leukemia. Drugs used in chemotherapy such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving decitabine, venetoclax, and ponatinib may help to control Philadelphia chromosome-positive acute myeloid leukemia or myeloid blast phase or accelerated phase chronic myelogenous leukemia.
RATIONALE: Giving low doses of chemotherapy, such as fludarabine, and radiation therapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) or interferon alfa after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving fludarabine together with radiation therapy works in treating patients who are undergoing donor stem cell transplant for chronic phase or accelerated phase chronic myelogenous leukemia.
RATIONALE: STI571 may interfere with the growth of cancer cells and may be effective treatment for chronic myelogenous leukemia. PURPOSE: Phase II trial to study the effectiveness of STI571 in treating patients who have accelerated phase chronic myelogenous leukemia.
This phase II trial studies how well Triplex vaccine works in preventing cytomegalovirus (CMV) infection in patients undergoing a hematopoietic stem cell transplantation. CMV is a virus that may be carried for life and does not cause illness in most healthy individuals. However, in people whose immune systems are lowered (such as those undergoing stem cell transplantation), CMV can reproduce and cause disease and even death. The Triplex vaccine is made up of 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) placed into a weakened virus called modified vaccinia Ankara (MVA) that may help produce immunity (the ability to recognize and respond to an infection) and reduce the risk of developing complications related to CMV infection.
This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.
This randomized phase II trial studies how well multi-antigen cytomegalovirus (CMV)-modified vaccinia Ankara vaccine works in reducing CMV related complications in patients with blood cancer who are undergoing donor stem cell transplant. Vaccines made from a gene-modified virus may help the body build an effective immune response to kill cancer cells.
This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
This phase II trial studies how well blinatumomab, methotrexate, cytarabine, and ponatinib work in treating patients with Philadelphia chromosome (Ph)-positive, or BCR-ABL positive, or acute lymphoblastic leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as methotrexate and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab, methotrexate, cytarabine, and ponatinib may work better in treating patients with acute lymphoblastic leukemia.
This phase II trial studies how well low-intensity chemotherapy and ponatinib work in treating patients with Philadelphia chromosome-positive and/or BCR-ABL positive acute lymphoblastic leukemia that may have come back or is not responding to treatment. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, dexamethasone, methotrexate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with rituximab and blinatumomab, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Granulocyte colony stimulating factor helps the bone marrow make recover after treatment. Giving low-intensity chemotherapy, ponatinib, and blinatumomab may work better in treating patients with acute lymphoblastic leukemia.
This phase II trial studies how well an umbilical cord blood transplant with added sugar works with chemotherapy and radiation therapy in treating patients with leukemia or lymphoma. Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The umbilical cord blood cells will be grown ("expanded") on a special layer of cells collected from the bone marrow of healthy volunteers in a laboratory. A type of sugar will also be added to the cells in the laboratory that may help the transplant to "take" faster.
This phase I/II trial studies the side effects and best dose of axitinib and bosutinib and how well they work in treating patients with chronic, accelerated, or blastic phase chronic myeloid leukemia. Axitinib and bosutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II clinical trial studies how well personalized natural killer (NK) cell therapy works after chemotherapy and umbilical cord blood transplant in treating patients with myelodysplastic syndrome, leukemia, lymphoma or multiple myeloma. This clinical trial will test cord blood (CB) selection for human leukocyte antigen (HLA)-C1/x recipients based on HLA-killer-cell immunoglobulin-like receptor (KIR) typing, and adoptive therapy with CB-derived NK cells for HLA-C2/C2 patients. Natural killer cells may kill tumor cells that remain in the body after chemotherapy treatment and lessen the risk of graft versus host disease after cord blood transplant.
This randomized phase II trial studies the safety and how well multi-peptide cytomegalovirus (CMV)-modified vaccinia Ankara (MVA) vaccine works in reducing CMV complications in patients previously infected with CMV and are undergoing a donor hematopoietic cell transplant. CMV is a virus that may reproduce and cause disease and even death in patients with lowered immune systems, such as those undergoing a hematopoietic cell transplant. By placing 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) into a very safe, weakened virus called MVA, the multi-peptide CMV-MVA vaccine may be able to induce immunity (the ability to recognize and respond to an infection) to CMV. This may help to reduce both CMV complications and reduce the need for antiviral drugs in patients undergoing a donor hematopoietic cell transplant.
This is an observational registry to further characterize the safety profile of patients with chronic myeloid leukemia in the chronic phase (CP-CML), accelerated phase (AP-CML), blast phase (BP-CML), or Ph+ALL treated with Iclusig (ponatinib) in routine clinical practice in the US. The registry is focused on analysis of vascular occlusive events.