15 Clinical Trials for Various Conditions
This clinical trial evaluates the feasibility and acceptability of acupressure to the ear (auricular) to address appetite and weight in patients with stage II-IV gastric, esophageal, or pancreatic cancer. Cancer anorexia, the abnormal loss of appetite, directly leads to cancer-associated weight loss (cachexia) through malnourishment, reduced caloric intake, treatment side-effects, and other modifiable risk factors. Cachexia prolongs length of hospital stay for patients, negatively impacts treatment tolerance and adherence, and reduces overall patient quality of life. Auricular acupressure is a form of micro-acupuncture that exerts its effect by stimulating the central nervous system using adhesive taped pellets applied to specific locations on the external ear. The use of these pellets to deliver auricular acupressure has been shown to improve pain, fatigue, insomnia, nausea and vomiting, depression, and quality of life in both cancer and non-cancer settings. Auricular acupressure is a safe, inexpensive, and non-invasive approach to addressing cancer-related symptoms and treatment side-effects and may be effective at improving appetite and weight loss in stage II-IV gastric, esophageal, and pancreatic cancer patients.
This phase II trial tests what effects the addition of propranolol to pembrolizumab and standard chemotherapy (mFOLFOX) may have on response to treatment in patients with esophageal or gastroesophageal junction cancer that cannot be removed by surgery and has spread to nearby tissue or lymph nodes (unresectable locally advanced) or has spread from where it first started (primary site) to other places in the body (metastatic). Propranolol is a drug that is classified as a beta-blocker. Beta-blockers affect the heart and circulation (blood flow through arteries and veins). Cancer patients may be under a tremendous amount of stress with elevated levels of norepinephrine (a hormone produced by the adrenal glands in response to stress). Increased adrenergic stress may dampen the immune system, which beta-blockers, like propranolol, may be able to counteract. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in the standard chemotherapy regimen, mFOLFOX (leucovorin, fluorouracil and oxaliplatin) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding propranolol to pembrolizumab and standard mFOLFOX chemotherapy may increase the effectiveness of the pembrolizumab + mFOLFOX regimen.
To learn if atezolizumab in combination with oxaliplatin and 5-fluorouracil (5-FU), when given before surgery, can help to control esophageal and/or gastroesophageal cancer. To learn if adding tiragolumab to the above drug combination can help to control the disease.
This phase II/III trial studies the usefulness of treatment with nivolumab and ipilimumab in addition to standard of care chemotherapy and radiation therapy in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery. Immunotherapy with antibodies, such as nivolumab and ipilimumab, may remove the brake on the body's immune system and may interfere with the ability of tumor cells to grow and spread. Chemotherapy and radiation therapy may reduce the tumor size and the amount of normal tissue that needs to be removed during surgery. A combined treatment with nivolumab and ipilimumab, chemotherapy, and radiation therapy might be more effective in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery.
This phase II/III trial compares the addition of nivolumab to the usual treatment of paclitaxel and ramucirumab to paclitaxel and ramucirumab alone in treating patients with gastric or esophageal adenocarcinoma that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Adding nivolumab to ramucirumab and paclitaxel may work better to treat patients with advanced stomach or esophageal cancer.
This phase II trial tests how well preoperative (prior to surgery) radiation therapy with fluorouracil, oxaliplatin, and leucovorin calcium (FOLFOX) works for the treatment of stage I-III esophageal or gastroesophageal junction adenocarcinoma. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Fluorouracil stops cells from making deoxyribonucleic acid (DNA) and it may kill tumor cells. Leucovorin is not a chemotherapy medication but is given in conjunction with chemotherapy. Leucovorin is used with the chemotherapy medication fluorouracil to enhance the effects of the fluorouracil, in other words, to make the drug work better. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cell's DNA and may kill tumor cells. Giving preoperative hypofractionated radiation with fluorouracil and oxaliplatin may kill more tumor cells in patients with stage I-III esophageal or gastroesophageal junction adenocarcinoma.
The purpose of this Phase I study is to determine the recommended phase 2 dose (RP2D) and safety profile of NBTXR3 activated by radiation therapy with concurrent chemotherapy for the treatment of patients with esophageal adenocarcinoma. NBTXR3 is a drug that when activated by radiation therapy, may cause targeted destruction of cancer cells. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as oxaliplatin, fluorouracil, capecitabine, docetaxel, paclitaxel, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving NBTXR3 activated by radiation therapy with concurrent chemotherapy may help control the disease.
This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.
This trial tests new methods and materials for the real-time chemotherapy-associated side effects monitoring support system (RT-CAMSS) in patients with gastrointestinal cancers undergoing chemotherapy. RT-CAMSS is a monitoring support system that provides patients with evidence-based information and side-effect management and coping skills, emotional support and validation, and proactive care via text messages and questionnaires as they undergo chemotherapy.
This phase I trial studies the side effects of OBP-301 when given together with carboplatin, paclitaxel, and radiation therapy in treating patients with esophageal or gastroesophageal cancer that invades local or regional structures. OBP-301 is a virus that has been designed to infect and destroy tumor cells (although there is a small risk that it can also infect normal cells). Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving OBP-301 with chemotherapy and radiation therapy may work better than standard chemotherapy and radiation therapy in treating patients with esophageal or gastroesophageal cancer.
This trial studies cardiac changes after radiation or chemo-radiation for the treatment of lung or esophageal cancer that has not spread to other places in the body (non-metastatic) or has not come back (non-recurrent). Continuous cardiac monitoring with an implanted device may help to identify cardiac changes that would remain unnoticed, and facilitate the treatment of these early cardiac changes as part of standard care.
This trial studies how well proton beam radiation therapy compared with intensity modulated photon radiotherapy works in treating patients with stage I-IVA esophageal cancer. Proton beam radiation therapy uses a beam of protons (rather than x-rays) to send radiation inside the body to the tumor without damaging much of the healthy tissue around it. Intensity modulated photon radiotherapy uses high-energy x-rays to deliver radiation directly to the tumor without damaging much of the healthy tissue around it. It is not yet known whether proton beam therapy or intensity modulated photon radiotherapy will work better in treating patients with esophageal cancer.
This phase IIA trial investigates the side effects of Ad5.F35-hGCC-PADRE vaccine and to see how well it works in treating patients with gastrointestinal adenocarcinoma. Ad5.F35-hGCC-PADRE vaccine may help to train the patient's own immune system to identify and kill tumor cells and prevent it from coming back.
This phase II trial studies the effect of chemoradiation and pembrolizumab followed by pembrolizumab and lenvatinib before surgery in treating patients with esophageal or esophageal/gastroesophageal junction cancer that has not spread to other places in the body (non-metastatic). Pembrolizumab is an immunotherapy drug that works by harnessing the immune system to attack cancer. Lenvatinib is an anti-cancer drug that works by stopping or slowing down the growth of cancer cells. Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving chemoradiation and pembrolizumab followed by pembrolizumab and lenvatinib before surgery may kill more tumor cells.
This phase II trial compares the impact of subcutaneous (SC) nivolumab given in an in-home setting to an in-clinic setting on cancer care and quality of life. Currently, most drug-related cancer care is conducted in clinic type centers or hospitals which may isolate patients from family, friends and familiar surroundings for many hours per day. This separation adds to the physical, emotional, social, and financial burden for patients and their families. Traveling to and from medical facilities costs time, money, and effort and can be a disadvantage to patients living in rural areas, those with low incomes or poor access to transport. Studies have shown that cancer patients often feel more comfortable and secure being cared for in their own home environments. SC nivolumab in-home treatment may be safe, tolerable and/or effective when compared to in-clinic treatment and may reduce the burden of cancer and improve the quality of life in cancer patients.