Treatment Trials

14 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Preoperative Hypofractionated Radiotherapy with FOLFOX for Esophageal or Gastroesophageal Junction Adenocarcinoma
Description

This phase II trial tests how well preoperative (prior to surgery) radiation therapy with fluorouracil, oxaliplatin, and leucovorin calcium (FOLFOX) works for the treatment of stage I-III esophageal or gastroesophageal junction adenocarcinoma. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Fluorouracil stops cells from making deoxyribonucleic acid (DNA) and it may kill tumor cells. Leucovorin is not a chemotherapy medication but is given in conjunction with chemotherapy. Leucovorin is used with the chemotherapy medication fluorouracil to enhance the effects of the fluorouracil, in other words, to make the drug work better. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cell's DNA and may kill tumor cells. Giving preoperative hypofractionated radiation with fluorouracil and oxaliplatin may kill more tumor cells in patients with stage I-III esophageal or gastroesophageal junction adenocarcinoma.

ACTIVE_NOT_RECRUITING
Testing Immunotherapy (Atezolizumab) With or Without Chemotherapy in Locoregional MSI-H/dMMR Gastric and Gastroesophageal Junction (GEJ) Cancer
Description

This phase II trial compares atezolizumab in combination with chemotherapy (docetaxel, oxaliplatin, leucovorin calcium, fluorouracil, capecitabine) to atezolizumab alone for controlling the growth and/or spreading of the disease in patients with gastric or gastroesophageal junction (JEG) cancer that has not spread from where it first started (local) or only has spread to nearby lymph nodes or tissue (locoregional) and has high microsatellite instability (MSI-H) and mismatch repair deficiency (dMMR). The mismatch repair (MMR) system in the body corrects errors made during the copying of DNA and serves as a proofreading function. If this system isn't working correctly, mutations (changes) in DNA occur which can allow the cancer to grow or spread. This is called dMMR (deficient mismatch repair) . MSI-H describes cancer cells that have a high number of mutations within microsatellites. For example, microsatellite testing that shows mutations in 30% or more microsatellites is called microsatellite instability-high (MSI-H). Microsatellites are short, repeated sequences of DNA. There is evidence that MSI-H/ dMMR gastric or GEJ tumors respond well to immunotherapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Docetaxel is in a class of medications called taxanes. It stops tumor cells from growing and dividing and may kill them. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cell's DNA and may kill tumor cells. Capecitabine is in a class of medications called antimetabolites. It is taken up by tumor cells and breaks down into fluorouracil, a substance that kills tumor cells. Chemotherapy drugs such as leucovorin calcium and fluorouracil work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Using atezolizumab as immunotherapy with and following chemotherapy versus atezolizumab alone prior to and after surgery may shrink or stabilize the tumor in patients with MSI-H/dMMR localized gastric or GEJ cancer and may increase the length of time after treatment that cancer does not come back or get worse.

ACTIVE_NOT_RECRUITING
Chemoradiation and Pembrolizumab Followed by Pembrolizumab and Lenvatinib Before Surgery for the Treatment of Non-metastatic Esophageal or Esophageal/Gastroesophageal Junction Cancer
Description

This phase II trial studies the effect of chemoradiation and pembrolizumab followed by pembrolizumab and lenvatinib before surgery in treating patients with esophageal or esophageal/gastroesophageal junction cancer that has not spread to other places in the body (non-metastatic). Pembrolizumab is an immunotherapy drug that works by harnessing the immune system to attack cancer. Lenvatinib is an anti-cancer drug that works by stopping or slowing down the growth of cancer cells. Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving chemoradiation and pembrolizumab followed by pembrolizumab and lenvatinib before surgery may kill more tumor cells.

ACTIVE_NOT_RECRUITING
Testing the Addition of the Anti-cancer Viral Therapy Telomelysin™ to Chemoradiation for Patients With Advanced Esophageal Cancer and Are Not Candidates for Surgery
Description

This phase I trial studies the side effects of OBP-301 when given together with carboplatin, paclitaxel, and radiation therapy in treating patients with esophageal or gastroesophageal cancer that invades local or regional structures. OBP-301 is a virus that has been designed to infect and destroy tumor cells (although there is a small risk that it can also infect normal cells). Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving OBP-301 with chemotherapy and radiation therapy may work better than standard chemotherapy and radiation therapy in treating patients with esophageal or gastroesophageal cancer.

Conditions
Advanced Esophageal AdenocarcinomaAdvanced Gastroesophageal Junction AdenocarcinomaClinical Stage II Esophageal Adenocarcinoma AJCC v8Clinical Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IIA Esophageal Adenocarcinoma AJCC v8Clinical Stage IIA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IIB Esophageal Adenocarcinoma AJCC v8Clinical Stage IIB Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage III Esophageal Adenocarcinoma AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage II Esophageal Adenocarcinoma AJCC v8Pathologic Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Esophageal Adenocarcinoma AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage II Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Unresectable Gastroesophageal Junction AdenocarcinomaSquamous Cell CarcinomaSquamous Cell Cancer
RECRUITING
Comparing Proton Therapy to Photon Radiation Therapy for Esophageal Cancer
Description

This trial studies how well proton beam radiation therapy compared with intensity modulated photon radiotherapy works in treating patients with stage I-IVA esophageal cancer. Proton beam radiation therapy uses a beam of protons (rather than x-rays) to send radiation inside the body to the tumor without damaging much of the healthy tissue around it. Intensity modulated photon radiotherapy uses high-energy x-rays to deliver radiation directly to the tumor without damaging much of the healthy tissue around it. It is not yet known whether proton beam therapy or intensity modulated photon radiotherapy will work better in treating patients with esophageal cancer.

Conditions
Clinical Stage I Esophageal Adenocarcinoma AJCC v8Clinical Stage I Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage I Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage II Esophageal Adenocarcinoma AJCC v8Clinical Stage II Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IIA Esophageal Adenocarcinoma AJCC v8Clinical Stage IIA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IIB Esophageal Adenocarcinoma AJCC v8Clinical Stage IIB Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage III Esophageal Adenocarcinoma AJCC v8Clinical Stage III Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVA Esophageal Adenocarcinoma AJCC v8Clinical Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage I Esophageal Adenocarcinoma AJCC v8Pathologic Stage I Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage I Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IC Esophageal Adenocarcinoma AJCC v8Pathologic Stage IC Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage II Esophageal Adenocarcinoma AJCC v8Pathologic Stage II Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Esophageal Adenocarcinoma AJCC v8Pathologic Stage III Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIIA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIIB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage I Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage I Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage I Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage II Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage II Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Thoracic Esophagus Squamous Cell Carcinoma
RECRUITING
Phase I/II Study of Perioperative Chemotherapy Plus Immunotherapy Followed by Surgery in Localized Esophageal and Gastroesophageal Adenocarcinoma
Description

To learn if atezolizumab in combination with oxaliplatin and 5-fluorouracil (5-FU), when given before surgery, can help to control esophageal and/or gastroesophageal cancer. To learn if adding tiragolumab to the above drug combination can help to control the disease.

SUSPENDED
Nivolumab and Ipilimumab in Treating Patients With Esophageal and Gastroesophageal Junction Adenocarcinoma Undergoing Surgery
Description

This phase II/III trial studies the usefulness of treatment with nivolumab and ipilimumab in addition to standard of care chemotherapy and radiation therapy in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery. Immunotherapy with antibodies, such as nivolumab and ipilimumab, may remove the brake on the body's immune system and may interfere with the ability of tumor cells to grow and spread. Chemotherapy and radiation therapy may reduce the tumor size and the amount of normal tissue that needs to be removed during surgery. A combined treatment with nivolumab and ipilimumab, chemotherapy, and radiation therapy might be more effective in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery.

RECRUITING
Propranolol in Combination With Pembrolizumab and Standard Chemotherapy for the Treatment of Unresectable Locally Advanced or Metastatic Esophageal or Gastroesophageal Junction Adenocarcinoma
Description

This phase II trial tests what effects the addition of propranolol to pembrolizumab and standard chemotherapy (mFOLFOX) may have on response to treatment in patients with esophageal or gastroesophageal junction cancer that cannot be removed by surgery and has spread to nearby tissue or lymph nodes (unresectable locally advanced) or has spread from where it first started (primary site) to other places in the body (metastatic). Propranolol is a drug that is classified as a beta-blocker. Beta-blockers affect the heart and circulation (blood flow through arteries and veins). Cancer patients may be under a tremendous amount of stress with elevated levels of norepinephrine (a hormone produced by the adrenal glands in response to stress). Increased adrenergic stress may dampen the immune system, which beta-blockers, like propranolol, may be able to counteract. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in the standard chemotherapy regimen, mFOLFOX (leucovorin, fluorouracil and oxaliplatin) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding propranolol to pembrolizumab and standard mFOLFOX chemotherapy may increase the effectiveness of the pembrolizumab + mFOLFOX regimen.

NOT_YET_RECRUITING
Neoadjuvant Therapy for the Treatment of Gastroesophageal Junction and Gastric Cancers
Description

This phase I trial tests the safety, side effects studies chemotherapy followed by chemotherapy at the same time as radiation therapy (chemoradiation) before surgery (neoadjuvant) in treating patients with stage gastric (stomach) or gastroesophageal junction cancer . Chemotherapy drugs, such as docetaxel, oxaliplatin , leucovorin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy and chemoradiation before surgery may make the tumor smaller and may reduce the amount of normal tissue that needs to be removed.

ACTIVE_NOT_RECRUITING
Nivolumab, Ipilimumab and Chemoradiation in Treating Patients with Resectable Gastric Cancer
Description

This pilot phase I/II trial studies the side effects and how well nivolumab and ipilimumab in combination with chemotherapy and radiation therapy work in treating patients with gastric cancer that can be removed by surgery. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as oxaliplatin and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Intensity-modulated radiation therapy uses thin beams of radiation of different strengths aimed at the tumor from many angles. This type of radiation therapy may reduce the damage to healthy tissue near the tumor. Giving nivolumab, ipilimumab, chemotherapy and radiation therapy may work better in treating patients with gastric cancer.

Conditions
Clinical Stage 0 Gastric Cancer AJCC V8Clinical Stage 0 Gastroesophageal Junction Adenocarcinoma AJCC V8Clinical Stage I Gastric Cancer AJCC V8Clinical Stage I Gastroesophageal Junction Adenocarcinoma AJCC V8Clinical Stage IIB Gastric Cancer AJCC V8Clinical Stage IIB Gastroesophageal Junction Adenocarcinoma AJCC V8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC V8Clinical Stage IVA Gastric Cancer AJCC V8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC V8Gastric AdenocarcinomaLocalized Gastric CarcinomaLocalized Gastroesophageal Junction AdenocarcinomaPathologic Stage 0 Gastric Cancer AJCC V8Pathologic Stage 0 Gastroesophageal Junction Adenocarcinoma AJCC V8Pathologic Stage I Gastric Cancer AJCC V8Pathologic Stage IA Gastric Cancer AJCC V8Pathologic Stage IA Gastroesophageal Junction Adenocarcinoma AJCC V8Pathologic Stage IB Gastric Cancer AJCC V8Pathologic Stage IB Gastroesophageal Junction Adenocarcinoma AJCC V8Pathologic Stage IC Gastroesophageal Junction Adenocarcinoma AJCC V8Pathologic Stage II Gastroesophageal Junction Adenocarcinoma AJCC V8Pathologic Stage IIA Gastric Cancer AJCC V8Pathologic Stage IIA Gastroesophageal Junction Adenocarcinoma AJCC V8Pathologic Stage IIB Gastric Cancer AJCC V8Pathologic Stage IIB Gastroesophageal Junction Adenocarcinoma AJCC V8Pathologic Stage IIIA Gastric Cancer AJCC V8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC V8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC V8
RECRUITING
Adding Nivolumab to Usual Treatment for People With Advanced Stomach or Esophageal Cancer, PARAMUNE Trial
Description

This phase II/III trial compares the addition of nivolumab to the usual treatment of paclitaxel and ramucirumab to paclitaxel and ramucirumab alone in treating patients with gastric or esophageal adenocarcinoma that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Adding nivolumab to ramucirumab and paclitaxel may work better to treat patients with advanced stomach or esophageal cancer.

RECRUITING
Comparison of In-Home Versus In-Clinic Administration of Subcutaneous Nivolumab Through Cancer CARE (Connected Access and Remote Expertise) Beyond Walls (CCBW) Program
Description

This phase II trial compares the impact of subcutaneous (SC) nivolumab given in an in-home setting to an in-clinic setting on cancer care and quality of life. Currently, most drug-related cancer care is conducted in clinic type centers or hospitals which may isolate patients from family, friends and familiar surroundings for many hours per day. This separation adds to the physical, emotional, social, and financial burden for patients and their families. Traveling to and from medical facilities costs time, money, and effort and can be a disadvantage to patients living in rural areas, those with low incomes or poor access to transport. Studies have shown that cancer patients often feel more comfortable and secure being cared for in their own home environments. SC nivolumab in-home treatment may be safe, tolerable and/or effective when compared to in-clinic treatment and may reduce the burden of cancer and improve the quality of life in cancer patients.

RECRUITING
CPI-613 (Devimistat) in Combination With Hydroxychloroquine and 5-fluorouracil or Gemcitabine in Treating Patients With Advanced Chemorefractory Solid Tumors
Description

This phase II trial tests how well CPI-613 (devimistat) in combination with hydroxychloroquine (HCQ) and 5-fluorouracil (5-FU) or gemcitabine works in patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that have not responded to chemotherapy medications (chemorefractory). Metabolism is how the cells in the body use molecules (carbohydrates, fats, and proteins) from food to get the energy they need to grow, reproduce and stay healthy. Tumor cells, however, do this process differently as they use more molecules (glucose, a type of carbohydrate) to make the energy they need to grow and spread. CPI-613 works by blocking the creation of the energy that tumor cells need to survive, grow in the body and make more tumor cells. When the energy production they need is blocked, the tumor cells can no longer survive. Hydroxychloroquine is a drug used to treat malaria and rheumatoid arthritis and may also improve the immune system in a way that tumors may be better controlled. Fluorouracil is in a class of medications called antimetabolites. It works by killing fast-growing abnormal cells. Gemcitabine is a chemotherapy drug that blocks the cells from making DNA and may kill tumor cells. CPI-613 (devimistat) in combination with hydroxychloroquine and 5-fluorouracil or gemcitabine may work to better treat advanced solid tumors.

RECRUITING
NBTXR3, Chemotherapy, and Radiation Therapy for the Treatment of Esophageal Cancer
Description

The purpose of this Phase I study is to determine the recommended phase 2 dose (RP2D) and safety profile of NBTXR3 activated by radiation therapy with concurrent chemotherapy for the treatment of patients with esophageal adenocarcinoma. NBTXR3 is a drug that when activated by radiation therapy, may cause targeted destruction of cancer cells. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as oxaliplatin, fluorouracil, capecitabine, docetaxel, paclitaxel, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving NBTXR3 activated by radiation therapy with concurrent chemotherapy may help control the disease.