12 Clinical Trials for Various Conditions
RATIONALE: Drugs used in chemotherapy, such as busulfan and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. A donor peripheral blood, bone marrow , or umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects of busulfan, antithymocyte globulin, and fludarabine when given together with a donor stem cell transplant in treating young patients with blood disorders, bone marrow disorders, chronic myelogenous leukemia in first chronic phase, or acute myeloid leukemia in first remission.
RATIONALE: Monoclonal antibodies, such as alemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as fludarabine and busulfan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. A peripheral stem cell, bone marrow , or umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine together with methotrexate and methylprednisolone may stop this from happening. PURPOSE: This phase II trial is studying how well giving alemtuzumab together with fludarabine and busulfan works when given before donor stem cell transplant in treating young patients with hematologic disorders.
RATIONALE: Giving chemotherapy and total body irradiation before a donor bone marrow transplant or peripheral blood stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin and removing the T cells from the donor cells before transplant may stop this from happening. PURPOSE: This phase I trial is studying the side effects and best dose of donor T cells and antithymocyte globulin when given together with chemotherapy and total-body irradiation in treating young patients who are undergoing T-cell depleted donor stem cell transplant for myelodysplastic syndrome, leukemia, bone marrow failure syndrome, or severe immunodeficiency disease.
This phase II trial tests whether treosulfan, fludarabine, and rabbit antithymocyte globulin (rATG) work when given before a blood or bone marrow transplant (conditioning regimen) to cause fewer complications for patients with bone marrow failure diseases. Chemotherapy drugs, such as treosulfan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Fludarabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. rATG is used to decrease the body's immune response and may improve bone marrow function and increase blood cell counts. Adding treosulfan to a conditioning regimen with fludarabine and rATG may result in patients having less severe complications after a blood or bone marrow transplant.
This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This is a data collection study that will examine the general diagnostic and treatment data associated with the reduced-intensity chemotherapy-based regimen paired with simple alemtuzumab dosing strata designed to prevented graft failure and to aid in immune reconstitution following hematopoietic stem cell transplantation.
The objective of this study is to evaluate the efficacy of using a reduced-intensity condition (RIC) regimen with umbilical cord blood transplant (UCBT), double cord UCBT, matched unrelated donor (MUD) bone marrow transplant (BMT) or peripheral blood stem cell transplant (PBSCT) in patients with non-malignant disorders that are amenable to treatment with hematopoietic stem cell transplant (HSCT). After transplant, subjects will be followed for late effects and for ongoing graft success.
This is a clinical trial of bone marrow transplantation for patients with the diagnosis of a genetic disease of blood cells that do not have an HLA-matched sibling donor. Genetic diseases of blood cell include: Red blood cell defects e.g. hemoglobinopathies (sickle cell disease and thalassemia), Blackfan-Diamond anemia and congenital or chronic hemolytic anemias; White blood cells defects/immune deficiencies e.g. chronic granulomatous disease, Wiskott-Aldrich syndrome,Osteopetrosis, Kostmann's syndrome (congenital neutropenia), Hereditary Lymphohistiocytosis (HLH); Platelets defects e.g.Congenital amegakaryocytic thrombocytopenia; Metabolic/storage disorders e.g. leukodystrophies,mucopolysaccharidoses as Hurler disease;Stem cell defects e.g.reticular agenesis, among many other rare similar conditions. The study treatment plan uses a new transplant treatment regimen that aims to try to decrease the acute toxicities and complications associated with the standard treatment plans and to improve outcome The blood stem cells will be derived from either unrelated donor or unrelated umbilical cord blood.
This study's goal is to determine the frequency and severity of acute graft versus host disease, to evaluate incidence of primary and secondary graft rejection, to assess event free survival and overall survival, to determine the time to neutrophil and platelet engraftment, to determine the time to immune reconstitution (including normalization of T, B and natural killer (NK) cell repertoire and Immunoglobulin G production), and to establish the incidence of infectious complications including bacterial, viral, fungal and atypical mycobacterial and other infections following CD34+ selection in children, adolescents and young adults receiving an allogeneic peripheral blood stem cell transplant from a family member or unrelated adult donor for a non-malignant disease.
The purpose of this study is to learn more about the effects of (classification determinant) CD34+ stem cell selection on graft versus host disease (GVHD) in children, adolescents, and young adults. CD34+ stem cells are the cells that make all the types of blood cells in the body. GVHD is a condition that results from a reaction of transplanted donor T-lymphocytes (a kind of white blood cell) against the recipient's body and organs. Study subjects will be offered treatment involving the use of the CliniMACS® Reagent System (Miltenyi Biotec), a CD34+ selection device to remove T-cells from a peripheral blood stem cell transplant in order to decrease the risk of acute and chronic GVHD. This study involves subjects who are diagnosed with a malignant disease, that has either failed standard therapy or is unlikely to be cured with standard non-transplant therapy, who will receive a peripheral blood stem cell transplant. A malignant disease includes the following: Chronic Myeloid Leukemia (CML) in chronic phase, accelerated phase or blast crisis; Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); or Lymphoma (Hodgkin's and Non-Hodgkin's).
OBJECTIVES: I. Ascertain whether stem cell transplantation (SCT) is an effective method by which missing or dysfunctional enzymes can be replaced in patients with various inborn errors of metabolism. II. Determine whether clinical manifestations of the specific disease may be arrested or reversed by this treatment.