14 Clinical Trials for Various Conditions
Background: Clinical Genetics Branch (CGB) researchers study individuals and populations at high genetic risk of cancer in order to improve our understanding of cancer and to improve cancer care. There are currently 8 open clinical genetics studies at the CGB. * 001109: Defining the Natural History of Squamous Cell Carcinoma in Fanconi anemia (SCC Screening in FA). * 20C0107: Clinical, Genetic, and Epidemiologic Study of Children and Adults with RASopathies (RASopathies Study). * 02C0052: Etiologic Investigation of Cancer Susceptibility in Inherited Bone Marrow Failure Syndromes: A Natural History Study (Cancer in Bone Marrow Failure). * 11C0255: Clinical, Epidemiologic, and Genetic Studies of Li-Fraumeni Syndrome (Li Fraumeni Syndrome Study). * 11C0034: DICER1-Related Pleuropulmonary Blastoma Cancer Predisposition Syndrome: A Natural History Study (Pleuropulmonary Blastoma). * 02C0211: Clinical, Laboratory, and Epidemiologic Characterization of Individuals and Families at High Risk of Melanoma (Melanoma-Prone Families). * 78C0039: Clinical, Laboratory, and Epidemiologic Characterization of Individuals and Families at High Risk of Cancer (Cancer-prone families study). * 10CN188: Genetic Clues to Chordoma Etiology: A Protocol to Identify Sporadic Chordoma Patients for Studies of Cancer-susceptibility Genes (Sporadic Chordoma Study). Objective: To find people to participate in active CGB cancer research studies. Eligibility: People of any age who meet the eligibility criteria for one of the open CGB cancer research studies. This typically involves a personal or family history of certain cancers that are being studied by researchers at CGB. Design: Participants will fill out a screening questionnaire to determine if they are eligible to participate in one or more CGB clinical genetics studies. The survey asks about personal health history, including cancer; their family history; and genetic testing results and takes 15 to 20 minutes. Each study has its own eligibility criteria. Survey respondents will respond with study (or studies) that are interested in participating in, and the relevant study team(s) will review the screener to determine eligibility to participate in the study. Participants who are determine to be eligible for a study based on their screener will be contacted by the respective study team to learn more about the study and to consent to enroll in the study if they choose to do so. Participants who consent to enroll in a study will be asked to provide medical records and samples such as blood, saliva, or other tissues and to participate in activities such as phone interviews or surveys. They may be invited for evaluations at the clinical center. Every study activity is voluntary. None of the studies provide treatments. Participants may be contacted to consider enrolling in future studies.
This is a data collection study that will examine the general diagnostic and treatment data associated with the reduced-intensity chemotherapy-based regimen paired with simple alemtuzumab dosing strata designed to prevented graft failure and to aid in immune reconstitution following hematopoietic stem cell transplantation.
The objective of this study is to evaluate the efficacy of using a reduced-intensity condition (RIC) regimen with umbilical cord blood transplant (UCBT), double cord UCBT, matched unrelated donor (MUD) bone marrow transplant (BMT) or peripheral blood stem cell transplant (PBSCT) in patients with non-malignant disorders that are amenable to treatment with hematopoietic stem cell transplant (HSCT). After transplant, subjects will be followed for late effects and for ongoing graft success.
RATIONALE: Giving chemotherapy and total body irradiation before a donor bone marrow transplant or peripheral blood stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin and removing the T cells from the donor cells before transplant may stop this from happening. PURPOSE: This phase I trial is studying the side effects and best dose of donor T cells and antithymocyte globulin when given together with chemotherapy and total-body irradiation in treating young patients who are undergoing T-cell depleted donor stem cell transplant for myelodysplastic syndrome, leukemia, bone marrow failure syndrome, or severe immunodeficiency disease.
This phase II trial tests whether treosulfan, fludarabine, and rabbit antithymocyte globulin (rATG) work when given before a blood or bone marrow transplant (conditioning regimen) to cause fewer complications for patients with bone marrow failure diseases. Chemotherapy drugs, such as treosulfan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Fludarabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. rATG is used to decrease the body's immune response and may improve bone marrow function and increase blood cell counts. Adding treosulfan to a conditioning regimen with fludarabine and rATG may result in patients having less severe complications after a blood or bone marrow transplant.
The purpose of this study is to collect and store samples and health information for current and future research to learn more about the causes and treatment of blood diseases. This is not a therapeutic or diagnostic protocol for clinical purposes. Blood, bone marrow, hair follicles, nail clippings, urine, saliva and buccal swabs, left over tissue, as well as health information will be used to study and learn about blood diseases by using genetic and/or genomic research. In general, genetic research studies specific genes of an individual; genomic research studies the complete genetic makeup of an individual. It is not known why many people have blood diseases, because not all genes causing these diseases have been found. It is also not known why some people with the same disease are sicker than others, but this may be related to their genes. By studying the genomes in individuals with blood diseases and their family members, the investigators hope to learn more about how diseases develop and respond to treatment which may provide new and better ways to diagnose and treat blood diseases. Primary Objective: * Establish a repository of DNA and cryopreserved blood cells with linked clinical information from individuals with non-malignant blood diseases and biologically-related family members, in conjunction with the existing St. Jude biorepository, to conduct genomic and functional studies to facilitate secondary objectives. Secondary Objectives: * Utilize next generation genomic sequencing technologies to Identify novel genetic alternations that associate with disease status in individuals with unexplained non-malignant blood diseases. * Use genomic approaches to identify modifier genes in individuals with defined monogenic non-malignant blood diseases. * Use genomic approaches to identify genetic variants associated with treatment outcomes and toxicities for individuals with non-malignant blood disease. * Use single cell genomics, transcriptomics, proteomics and metabolomics to investigate biomarkers for disease progression, sickle cell disease (SCD) pain events and the long-term cellular and molecular effects of hydroxyurea therapy. * Using longitudinal assessment of clinical and genetic, study the long-term outcomes and evolving genetic changes in non-malignant blood diseases. Exploratory Objectives * Determine whether analysis of select patient-derived bone marrow hematopoietic progenitor/stem (HSPC) cells or induced pluripotent stem (iPS) cells can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms. * Determine whether analysis of circulating mature blood cells and their progenitors from selected patients with suspected or proven genetic hematological disorders can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms.
This study's goal is to determine the frequency and severity of acute graft versus host disease, to evaluate incidence of primary and secondary graft rejection, to assess event free survival and overall survival, to determine the time to neutrophil and platelet engraftment, to determine the time to immune reconstitution (including normalization of T, B and natural killer (NK) cell repertoire and Immunoglobulin G production), and to establish the incidence of infectious complications including bacterial, viral, fungal and atypical mycobacterial and other infections following CD34+ selection in children, adolescents and young adults receiving an allogeneic peripheral blood stem cell transplant from a family member or unrelated adult donor for a non-malignant disease.
Patients with medical conditions requiring allogeneic hematopoietic cell transplantation (allo-HCT) are at risk of developing a condition called graft versus host disease (GvHD) which carries a high morbidity and mortality. This is a phase I/II study that will test the safety and efficacy of hematopoietic cell transplantation (HCT) with ex-vivo T cell receptor Alpha/Beta+ and CD19 depletion to treat patients' underlying condition. This process is expected to substantially decrease the risk of GvHD thus allowing for the elimination of immunosuppressive therapy post-transplant. The study will use blood stem/progenitor cells collected from the peripheral blood of parent or other half-matched (haploidentical) family member donor. The procedure will be performed using CliniMACS® TCRα/β-Biotin System which is considered investigational.
The purpose of this study is to determine a safe dose of BPX-501 gene modified T cells infused after a haplo-identical stem cell transplant to facilitate engraftment and the safety of Rimiducid (AP1903) on day 7 to prevent GVHD.
The purpose of this study is to find out what effects, good and/or bad, the addition of clofarabine, a new chemotherapy agent, to a standard busulfan and fludarabine conditioning treatment has. The study will also look at what causes some people to have high drug levels of these medications in their body compared to other people that may have low drug levels even if they all receive the same dose of medication.
The purpose of this study is to learn more about the effects of (classification determinant) CD34+ stem cell selection on graft versus host disease (GVHD) in children, adolescents, and young adults. CD34+ stem cells are the cells that make all the types of blood cells in the body. GVHD is a condition that results from a reaction of transplanted donor T-lymphocytes (a kind of white blood cell) against the recipient's body and organs. Study subjects will be offered treatment involving the use of the CliniMACS® Reagent System (Miltenyi Biotec), a CD34+ selection device to remove T-cells from a peripheral blood stem cell transplant in order to decrease the risk of acute and chronic GVHD. This study involves subjects who are diagnosed with a malignant disease, that has either failed standard therapy or is unlikely to be cured with standard non-transplant therapy, who will receive a peripheral blood stem cell transplant. A malignant disease includes the following: Chronic Myeloid Leukemia (CML) in chronic phase, accelerated phase or blast crisis; Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); or Lymphoma (Hodgkin's and Non-Hodgkin's).
The purpose of this study is to determine the safety and dosing of drug Sotatercept, as a subcutaneous injection, to stimulate production of red blood cell production. To be given every 28 days for up to four doses.
The Shwachman-Diamond Syndrome Global Patient Survey and Collaboration Program (SDS-GPS) is an opportunity for patients and their families - from anywhere in the world - to share their experience living with SDS via a safe, secure, and convenient online platform, to * expand the understanding of SDS * improve the lives of people with SDS, and * accelerate the development of new therapies and cures for SDS. By joining, participants will receive early access to relevant information about new clinical trials and other research opportunities (such as clinical registries) based on their profile, accelerating research and increasing clinical trial impact and recruitment success. The platform, consent forms, and surveys are available in five languages: English, Spanish, French, German, and Italian. More languages to come.
This protocol provides expanded access to bone marrow transplants for children who lack a histocompatible (tissue matched) stem cell or bone marrow donor when an alternative donor (unrelated donor or half-matched related donor) is available to donate. In this procedure, some of the blood forming cells (the stem cells) are collected from the blood of a partially human leukocyte antigen (HLA) matched (haploidentical) donor and are transplanted into the patient (the recipient) after administration of a "conditioning regimen". A conditioning regimen consists of chemotherapy and sometimes radiation to the entire body (total body irradiation, or TBI), which is meant to destroy the cancer cells and suppress the recipient's immune system to allow the transplanted cells to take (grow). A major problem after a transplant from an alternative donor is increased risk of Graft-versus-Host Disease (GVHD), which occurs when donor T cells (white blood cells that are involved with the body's immune response) attack other tissues or organs like the skin, liver and intestines of the transplant recipient. In this study, stem cells that are obtained from a partially-matched donor will be highly purified using the investigational CliniMACS® stem cell selection device in an effort to achieve specific T cell target values. The primary aim of the study is to help improve overall survival with haploidentical stem cell transplant in a high risk patient population by limiting the complication of GVHD.