345 Clinical Trials for Various Conditions
RATIONALE: Drugs used in chemotherapy, such as amifostine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying how well amifostine works in treating young patients with newly diagnosed de novo myelodysplastic syndromes.
This phase II trial is studying how well belinostat works in treating patients with myelodysplastic syndromes. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.
This phase I/II trial studies how well giving azacitidine together with etanercept works in treating patients with myelodysplastic syndromes (MDS). Drugs used in chemotherapy, such as azacitidine, works in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Chemoprotective drugs, such as etanercept, may protect normal cells from the side effects of chemotherapy
This phase I/II trial studies the side effects and best dose of filgrastim (granulocyte colony-stimulating factor \[G-CSF\]), cladribine, cytarabine, and mitoxantrone, when given together with sorafenib and to see how well they work in treating patients with newly-diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome (likely to be more aggressive). Drugs used in chemotherapy, such as cladribine, cytarabine, and mitoxantrone work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Colony-stimulating factors, such as filgrastim, may increase the production of blood cells and may help the immune system recover from the side effects of chemotherapy. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving filgrastim, cladribine, cytarabine, and mitoxantrone together with sorafenib may kill more cancer cells.
This phase Ib trial studies the side effects and best dose of ibrutinib when given together with azacitidine in treating patients with myelodysplastic syndrome that is likely to occur or spread (higher risk) and who were previously treated or untreated and unfit for or refused intense therapy. Ibrutinib and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of selinexor when given after stem cell transplant in treating patients with acute myeloid leukemia that is at intermediate or high risk of spreading or coming back (intermediate- or high-risk), or myelodysplastic syndrome that is at high risk of spreading or coming back (high-risk). Selinexor works to stop cancer growth by blocking an enzyme, which may cause cancer cells to die and also kill cells that cause the cancer to grow, which commonly do not respond to regular chemotherapy.
This phase I/Ib trial studies the side effects and best dose of azacitidine and sonidegib or decitabine and so see how well they work in treating patients with myeloid malignancies. The hedgehog (Hh) signaling pathway plays an important role in cellular growth, differentiation and repair. Inappropriate activation of Hh pathway signaling and uncontrolled cellular proliferation may be associated with mutations in the Hh-ligand cell surface receptor Smo. Sonidegib binds to the Hh cell surface receptor Smo, which may result in the suppression of the Hh signaling pathway and the inhibition of cancer cells. Azacitidine and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine together with sonidegib or decitabine may be a safe and successful treatment for patients with myeloid malignancies.
This pilot clinical trial aims to assess feasibility and tolerability of using an LINAC based "organ-sparing marrow-targeted irradiation" to condition patients with high-risk hematological malignancies who are otherwise ineligible to undergo myeloablative Total body irradiation (TBI)-based conditioning prior to allogeneic stem cell transplant. The target patient populations are those with ALL, AML, MDS who are either elderly (\>50 years of age) but healthy, or younger patients with worse medical comorbidities (HCT-Specific Comorbidity Index Score (HCT-CI) \> 4). The goal is to have the patients benefit from potentially more efficacious myeloablative radiation based conditioning approach without the side effects associated with TBI.
This phase II trial studies how well cladribine, idarubicin, cytarabine, and venetoclax work in patients with acute myeloid leukemia, high-risk myelodysplastic syndrome, or blastic phase chronic myeloid leukemia. Drugs used in chemotherapy, such as cladribine, idarubicin, cytarabine, and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase I/II trial studies the side effects and best dose of mitoxantrone hydrochloride when given together with filgrastim, cladribine, and cytarabine and to see how well they work in treating patients with acute myeloid leukemia or high-risk myelodysplastic syndromes that is newly diagnosed, has returned, or does not respond to treatment. Drugs used in chemotherapy, such as filgrastim, cladribine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase 2 clinical trial studies how well CPX-351 (liposomal cytarabine-daunorubicin) works in treating patients with relapsed or refractory acute myeloid leukemia or myelodysplastic syndrome. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
This phase I/II studies the side effects and best dose of natural killer cells before and after donor stem cell transplant and to see how well they work in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelogenous leukemia. Giving chemotherapy with or without total body irradiation before a donor peripheral blood stem cell or bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
This phase II trial studies how well sirolimus and azacitidine works in treating patients with high-risk myelodysplastic syndrome or recurrent acute myeloid leukemia. Sirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Sirolimus and azacitidine may kill more cancer cells.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This clinical trial studies idarubicin, cytarabine, and pravastatin sodium in treating patients with newly diagnosed acute myeloid leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pravastatin sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving idarubicin and cytarabine together with pravastatin sodium may kill more cancer cells.
This randomized clinical trial studies different chemotherapies in treating patients with myelodysplastic syndrome before donor stem cell transplant. Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells, and may prevent the myelodysplastic syndrome from coming back after the transplant. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
This phase II trial studies how well decitabine and total-body irradiation followed by donor bone marrow transplant and cyclophosphamide works in treating patients with relapsed or refractory acute myeloid leukemia. Giving decitabine and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving decitabine and total-body irradiation before the transplant together with high-dose cyclophosphamide, tacrolimus, and mycophenolate mofetil after the transplant may stop this from happening.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This phase II trial studies methylprednisolone, horse anti-thymocyte globulin, cyclosporine, filgrastim, and/or pegfilgrastim or pegfilgrastim biosimilar in treating patients with aplastic anemia or low or intermediate-risk myelodysplastic syndrome. Horse anti-thymocyte globulin is made from horse blood and targets immune cells known as T-lymphocytes. Since T-lymphocytes are believed to be involved in causing low blood counts in aplastic anemia and in some cases of myelodysplastic syndromes, killing these cells may help treat the disease. Methylprednisolone and cyclosporine work to suppress immune cells called lymphocytes. This may help to improve low blood counts in aplastic anemia and myelodysplastic syndromes. Filgrastim and pegfilgrastim are designed to cause white blood cells to grow. This may help to fight infections and help improve the white blood cell count. Giving methylprednisolone and horse anti-thymocyte globulin together with cyclosporine, filgrastim, and/or pegfilgrastim may be an effective treatment for patients with aplastic anemia or myelodysplastic syndrome.
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This study examines a new oral chemotherapy drug called tosedostat, in combination with cytarabine or decitabine. Tosedostat is thought to work by decreasing the availability of amino acids (building blocks the cell needs to make proteins) in cells. It has been shown in early studies to have activity against a variety of cancers, including leukemias. Patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) with specific genetic mutations have a poorer response to chemotherapy and a higher risk of relapse after treatment. Researchers are looking to see if combinations of chemotherapy drugs may improve outcomes for patients that do not respond as well with the current chemotherapy regimens, without increasing the risks of treatment.
This randomized phase II trial studies how well giving rasburicase together with allopurinol works in treating patients with hematologic malignancies. Rasburicase may reduce the level of uric acid in the blood. Allopurinol may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known which dose of rasburicase is more effective in treating hematologic malignancies when given together with or without allopurinol.
This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.
This randomized phase III trial is studying how well Caphosol rinse works in preventing mucositis in young patients undergoing autologous or donor stem cell transplant. Supersaturated calcium phosphate (Caphosol) rinse may be able to prevent mucositis, or mouth sores, in patients undergoing stem cell transplant.
RATIONALE: Deferasirox may remove excess iron from the body caused by blood transfusions. PURPOSE: This clinical trial studies deferasirox in treating iron overload caused by blood transfusions in patients with hematologic malignancies.
RATIONALE: Growth factors, such as palifermin, may prevent chronic graft-versus-host disease caused by donor stem cell transplant. PURPOSE: This randomized clinical trial studies palifermin in preventing chronic graft-versus-host disease in patients who have undergone donor stem cell transplant for hematologic cancer
RATIONALE: Infection prophylaxis and management may help prevent cytomegalovirus (CMV) infection caused by a stem cell transplant. PURPOSE:This clinical trial studies infection prophylaxis and management in treating cytomegalovirus infection in patients with hematologic malignancies previously treated with donor stem cell transplant.
RATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.
This phase II trial is studying the safety and potential efficacy of infusing non-human leukocyte antigen matched ex vivo expanded cord blood progenitors with one or two unmanipulated umbilical cord blood units for transplantation following conditioning with fludarabine phosphate, cyclophosphamide and total body irradiation, and immunosuppression with cyclosporine and mycophenolate mofetil for patients with hematologic malignancies. Chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation given before an umbilical cord blood transplant stops the growth of leukemia cells and works to prevent the patient's immune system from rejecting the donor's stem cells. The healthy stem cells from the donor's umbilical cord blood help the patient's bone marrow make new red blood cells, white blood cells, and platelets. It may take several weeks for these new blood cells to grow. During that period of time, patients are at increased risk for bleeding and infection. Faster recovery of white blood cells may decrease the number and severity of infections. Studies have shown that counts recover more quickly when more cord blood cells are given with the transplant. We have developed a way of growing or "expanding" the number of cord blood cells in the lab so that there are more cells available for transplant. We are doing this study to find out whether or not giving these expanded cells along with one or two unexpanded cord blood units is safe and if use of expanded cells can decrease the time it takes for white blood cells to recover after transplant. We will study the time it takes for blood counts to recover, which of the two or three cord blood units makes up the patient's new blood system, and how quickly immune system cells return.
This phase II clinical trial is studying how well giving busulfan, fludarabine phosphate, and anti-thymocyte globulin followed by donor stem cell transplant and azacitidine works in treating patients with high-risk myelodysplastic syndrome and older patients with acute myeloid leukemia. Giving low doses of chemotherapy, such as busulfan and fludarabine phosphate, before a donor stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-vs-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving anti-thymocyte globulin before transplant and giving azacitidine, tacrolimus, and methotrexate after the transplant may stop this from happening.