59 Clinical Trials for Various Conditions
This phase I trial is studying the side effects and best dose of vandetanib when given together with radiation therapy in treating young patients with newly diagnosed diffuse brain stem glioma.
Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. Looking for inheritable mutations in normal cells (blood) is not the purpose of this study. Genetic tests of normal blood can reveal information about the patient and also about the their relatives. The doctor will discuss what the tests results may mean for the patient and the their family. Patient may be monitored on this study for up to 5 years.
Background: * Diffusely infiltrating pontine glioma (DIPG) or supratentorial high-grade glioma (HGG) are brain tumors that are often difficult to treat. It is very difficult to get chemotherapy agents to tumors in the brain, and researchers are looking for new methods to directly treat these types of cancer. * IL-13 is an immune molecule normally occurring in the body. Patients with gliomas appear to have significant amounts of the IL-13 receptors in their brain tumors. An experimental drug, IL13-PE38QQR, combines a bacteria toxin with human IL-13 to allow the toxin to enter and destroy the tumor cell. Early clinical studies suggest this treatment may prolong survival of patients with these types of brain tumors. * A technique called convection-enhanced delivery (CED) uses continuous pressure to push large molecules through the membranes protecting the brain to reach brain tumors. This technique can treat a tumor more directly than with traditional methods. Objectives: * To test the safety and feasibility of giving IL13-PE38QQR directly into regions of the brain in pediatric patients with DIPG or HGG, using CED. * To determine the most appropriate dose of IL13-PE38QQR to treat DIPG or HGG. * To determine the effects of this experimental therapy on the tumor. * To evaluate the physical changes in the tumor before and after the therapy. Eligibility: * Patients who are less than 18 years of age and have been diagnosed with either DIPG or with supratentorial HGG that has not responded well to standard treatments. Design: * Patients will be admitted to the hospital and will receive a magnetic resonance imaging (MRI) scan to show the exact location of the tumor. A small plastic tube will be inserted surgically into the tumor area, and IL13-PE38QQR and a MRI contrast agent (gadolinium DTPA) will be infused into the area. * MRI scans will monitor the process, and the tube will be removed after surgery. * Doses will be adjusted over the course of the study. * Patients who respond well to treatment may be eligible to receive a second infusion, no sooner than 4 weeks after the first treatment. * Post-treatment visits: Clinic visits 4 and 8 weeks after the treatment, and then every 8 weeks for up to 1 year. * Physical examination with neurological testing, an MRI, and standard blood and urine tests.
This multi-institutional study will prospectively collect tumor and constitutional tissue samples from patients with diffuse brainstem glioma and other types of brainstem gliomas either during therapy or at autopsy to perform an extensive analysis of genetic and molecular abnormalities in these tumors.
This study assesses the safety and efficacy of repeat monthly dosing of super-selective intra-arterial cerebral infusion (SIACI) of cetuximab and bevacizumab in patients \< 22 years of age.
The purpose of this study is to prospectively collect specimens from pediatric patients with diffuse intrinsic pontine glioma or brainstem glioma, either during therapy or at autopsy, in order to characterize the molecular abnormalities of this tumor.
Pediatric high-grade gliomas are highly aggressive and treatment options are limited. The purpose of this first-in-pediatrics study is to examine the safety, tolerability, and pharmacokinetics of GDC-0084 and to estimate its maximum tolerated dose (MTD) when administered to pediatric patients with diffuse intrinsic pontine glioma (DIPG) or other diffuse midline H3 K27M-mutant gliomas after they have received radiation therapy (RT). GDC-0084 is a brain-penetrant inhibitor of a growth-promoting cell signaling pathway that is dysregulated in the majority of diffuse midline glioma tumor cells. This study is also designed to enable a preliminary assessment of the antitumor activity of single-agent GDC-0084, in the hope of enabling rational combination therapy with systemic therapy and/or radiation therapy (RT) in this patient population, which is in desperate need of therapeutic advances. Primary Objectives 1. To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of GDC-0084 in pediatric patients with newly diagnosed diffuse midline glioma, including diffuse intrinsic pontine glioma (DIPG) 2. To define and describe the toxicities associated with administering GDC-0084 after radiation therapy (RT) in a pediatric population 3. To characterize the pharmacokinetics of GDC-0084 in a pediatric population Secondary Objectives 1. To estimate the rate and duration of radiographic response in patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084 2. To estimate the progression-free survival (PFS) and overall survival (OS) distributions for patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084
In this research study, we want to learn about the safety of the study drugs, ribociclib and everolimus, when given together at different doses after radiation therapy. We also want to learn about the effects, if any, these drugs have on children and young adults with brain tumors. We are asking people to be in this research study who have been diagnosed with a high grade glioma, their tumor has been screened for the Rb1 protein, and they have recently finished radiation therapy. If a patient has DIPG or a Bi-thalamic high grade glioma, they do not need to have the tumor tissue screened for the Rb1 protein, but do need to have finished radiation therapy. Tumor cells grow and divide quickly. In normal cells, there are proteins that control how fast cells grow but in cancer cells these proteins no longer work correctly making tumor cells grow quickly. Both study drugs work in different ways to slow down the growth of tumor cells. The researchers think that if the study drugs are given together soon after radiation therapy, it may help improve the effect of the radiation in stopping or slowing down tumor growth. The study drugs, ribociclib and everolimus, have been approved by the United States Food and Drug Administration (FDA). Ribociclib is approved to treat adults with breast cancer and everolimus is approved for use in adults and children who have other types of cancers. The combination of ribociclib and everolimus has not been tested in children or in people with brain tumors and is considered investigational. The goals of this study are: * Find the safest dose of ribociclib and everolimus that can be given together after radiation. * Learn the side effects (both good and bad) the study drugs have on the body and tumor. * Measure the levels of study drug in the blood over time. * Study the changes in the endocrine system that may be caused by the tumor, surgery or radiation.
The goal of this clinical research study is to find a safe dose of radiation that can be given to patients with brainstem glioma who have already received radiation therapy. You will receive photon radiation therapy. This type of radiation is similar to the radiation you have already had. Conformal radiotherapy or intensity modulated radiotherapy (IMRT) will be used to try to treat the tumor while affecting as little of the surrounding normal tissue as possible.
Currently, there are few effective treatments for the following aggressive brain tumors: glioblastoma multiforme, anaplastic astrocytoma, gliomatosis cerebri, gliosarcoma, or brainstem glioma. Surgery and radiation can generally slow down these aggressive brain tumors, but in the majority of patients, these tumors will start growing again in 6-12 months. Adding chemotherapy drugs to surgery and radiation does not clearly improve the cure rate of children with malignant gliomas. The investigators are conducting this study to see if the combination of valproic acid and bevacizumab (also known as AvastinTM) with surgery and radiation will shrink these brain tumors more effectively and improve the chance of cure.
Diffuse pontine gliomas are tumors on the pons portion of the brainstem. Their peak incidence is in children between 5 and 10 years old. Their location makes surgical resection impossible. Most patients are treated with radiation, which typically delays progression of the tumor for a median time of only about 6 months; median survival time is less than 1 year. The addition of chemotherapy has not improved the outcome. Alpha, beta, and gamma interferons have been used to treat malignant brain tumors, with mixed results. Different doses and different methods of administration have been studied. Alpha interferon is usually given in high doses 2 or 3 times a week, but it has serious side effects at these doses. Recent studies have shown that administering chemotherapy more frequently at smaller doses (metronomic) may have a better effect against the tumor. PEG-Intron(Trademark) is a form of interferon alpha combined with monomethoxy polyethylene glycol (PEG). It has a longer half-life than interferon alone, is administered once a week, and the long half-life reduces the peaks and troughs in blood levels. This study will enroll 32 patients under age 21. The primary goals of the study are to determine if there is a difference in the 2-year survival rate of patients treated with radiation alone and those treated with radiation followed by PEG-Intron(Trademark) and to define the toxicities of PEG-Intron(Trademark) in the study doses. Secondary goals are to evaluate various magnetic resonance imaging (MRI) techniques for noninvasive monitoring of changes in the brainstem and to evaluate neuropsychological function. In this study, PEG-Intron(Trademark) will be administered subcutaneously once a week at low doses (0.3 microgram per kilogram of body weight) for a 4-week cycle. The cycles will be repeated indefinitely until progression of disease or serious side effects develop. For less severe effects, the dose will be lowered and the patient may remain in the study. For more severe effects, the dose will be discontinued. Patients in the study may receive supportive medication but may not receive other forms of chemotherapy. Patients or their caregivers will be instructed in how to inject the drug. Patients and/or caregivers will be asked to maintain a diary documenting the dose, site of administration, and any side effects. The diary will be reviewed at each National Cancer Institute (NCI) visit. Patients will return to NCI before cycles 2 and 3. If there are no significant side effects, patients may then return to NCI before every other cycle, indefinitely (i.e., before cycles 5, 7, 9, etc.). Patients will undergo the following tests and procedures: * Physical examination, including neurologic exam, monthly * Complete blood count, differential, and platelet count weekly during cycle 1 and every 2 weeks thereafter if no severe side effects occur * Blood chemistries weekly during cycle 1 and every 2 weeks thereafter if no severe side effects occur * Endocrine function tests before each cycle * Urinalysis before each cycle * MRI of the brain before cycles 1, 2, 3, 5, 7, and every other month; patients may also have proton magnetic spectroscopic imaging performed at the time of the MRI
This research study is evaluating the safety, tolerability and preliminary efficacy of the drugs marizomib and panobinostat in pediatric patients with diffuse intrinsic pontine glioma (DIPG). The names of the study drugs involved in this study are: * Marizomib * Panobinostat
This is a study to determine the safety and efficacy of the drug, mebendazole, when used in combination with standard chemotherapy drugs for the treatment of pediatric brain tumors. Mebendazole is a drug used to treat infections with intestinal parasites and has a long track record of safety in humans. Recently, it was discovered that mebendazole may be effective in treating cancer as well, in particular brain tumors. Studies using both cell cultures and mouse models demonstrated that mebendazole was effective in decreasing the growth of brain tumor cells. This study focuses on the treatment of a category of brain tumors called gliomas. Low-grade gliomas are tumors arising from the glial cells of the central nervous system and are characterized by slower, less aggressive growth than that of high-grade gliomas. Some low-grade gliomas have a more aggressive biology and an increased likelihood of resistance or recurrence. Low-grade gliomas are often able to be treated by observation alone if they receive a total surgical resection. However, tumors which are only partially resected and continue to grow or cause symptoms, or those which recur following total resection require additional treatment, such as chemotherapy. Due to their more aggressive nature, pilomyxoid astrocytomas, even when totally resected, will often be treated with chemotherapy. The current first-line treatment at our institution for these low-grade gliomas involves a three-drug chemotherapy regimen of vincristine, carboplatin, and temozolomide. However, based on our data from our own historical controls, over 50% of patients with pilomyxoid astrocytomas will continue to have disease progression while on this treatment. We believe that mebendazole in combination with vincristine, carboplatin, and temozolomide may provide an additional therapeutic benefit with increased progression-free and overall survival for low-grade glioma patients, particularly for those with pilomyxoid astrocytomas. High grade gliomas are more aggressive tumors with poor prognoses. The standard therapy is radiation therapy. A variety of adjuvant chemotherapeutic combinations have been used, but with disappointing results. For high-grade gliomas this study will add mebendazole to the established combination of bevacizumab and irinotecan to determine this combinations safety and efficacy
The standard of care for children with DIPG includes focal radiotherapy (RT) but outcomes have remained dismal despite this treatment. The addition of oral Temozolomide (TMZ) concurrently with RT followed by monthly TMZ was also found to be safe but ineffective. Recent studies in adults have shown that certain types of chemotherapy induce a profound but transient lymphopenia (low blood lymphocytes) and vaccinating and/or the adoptive transfer of tumor-specific lymphocytes into the cancer patient during this lymphopenic state leads to dramatic T cell expansion and potent immunologic and clinical responses. Therefore, patients in this study will either receive concurrent TMZ during RT and immunotherapy during and after maintenance cycles of dose-intensive TMZ (Group A) or focal radiotherapy alone and immunotherapy without maintenance DI TMZ (Group B). Immune responses during cycles of DC vaccination with or without DI TMZ will be evaluated in both treatment groups.
This phase I/II trial studies the side effects and the best dose of veliparib when given together with radiation therapy and temozolomide and to see how well they work in treating younger patients newly diagnosed with diffuse pontine gliomas. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells either by killing the cells or by stopping them from dividing. Giving veliparib with radiation therapy and temozolomide may kill more tumor cells.
The purpose of this study is to test the safety of a new method to treat Diffuse Intrinsic Pontine Glioma (DIPG). The researchers will use "convection-enhanced delivery" (CED) to deliver an agent called 124I-omburtamab. CED is performed during surgery. The study agent is infused through a small tube placed into the tumor in the brain. Many studies have shown this can safely be done in animals but this study is the first time 124I-omburtamab will be given by CED in humans. This will be one of the first times that CED has been performed in the brain stem. Omburtamab is something called an antibody. Antibodies are made by the body to fight infections and sometimes cancer. The antibody omburtamab is produced by mice and can attack many kinds of tumors. A radioactive substance, 124I-omburtamab, is attached to omburtamab. 124I-omburtamab sticks to parts of tumor cells and can cause the tumor cells to die from radiation. Studies have also been done on humans using 124I-omburtamab to treat other kinds of cancer. Our studies of some DPG and related tumors suggest that omburtamab will bind to the tumor, but the investigators don't know that for sure. In this study, the researchers want to find out how safe 124I-omburtamab given by CED is at different dose levels. They will look to see what effects (both good and bad) it has on the patient. The dose of 124I-omburtamab will increase for each new group of patients. The procedure has already been safely performed with lower doses and infusion volumes in a number of patients here at MSKCC. The amount they get will depend on when they enter the study. If too many serious side effects are seen with a certain dose, no one will be treated with a higher dose, and some more patients may be treated with a lower dose to make sure that dose is safe.
This is a pilot/feasibility study. The study design represents a modification of current standard of care for Diffuse Intrinsic Pontine Glioma (DIPG) (5580 cGY involved field radiation), with the final two doses of radiation given at intervals during the vaccination phase of treatment. Patients between the ages of 3 years and 25 years diagnosed with Diffuse Intrinsic Pontine Glioma (DIPG) will be allowed to participate in the trial. Study enrollment will occur after the completion of conformal radiation therapy to a dose of 5580 cGy and the post radiation therapy (RT) magnetic resonance imaging (MRI) shows no disease progression. Three patients with glioblastoma multiforme, aged 16 years and older, will be entered first to confirm vaccine safety before enrolling DIPG patients.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Giving chemotherapy together with radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving chemotherapy together with radiation therapy after surgery followed by chemotherapy alone works in children with newly diagnosed astrocytoma, glioblastoma multiforme, gliosarcoma, or diffuse intrinsic pontine glioma.
Central nervous system (CNS) malignancies are the second most common malignancy and the most common solid tumor of childhood, including adolescence. Annually in the United States, approximately 2,200 children are diagnosed with CNS malignancy and rates appear to be increasing. CNS tumors are the leading cause of death from solid tumors in children. Survival duration after diagnosis in children is highly variable depending in part on age at diagnosis, location of tumor, and extent of resection; however, most children with high grade glioma die within 3 years of diagnosis. All patients with high grade glioma experience a recurrence after first-line therapy, so improvements in both first-line and salvage therapy are critical to enhancing quality-of-life and prolonging survival. It is unknown if currently used intravenous (IV) therapies even cross the blood brain barrier (BBB). We have shown in previous phase I trials that a single Superselective Intra-arterial Cerebral Infusion (SIACI) of Cetuximab and/or Bevacizumab is safe for the treatment of recurrent glioblastoma multiforme (GBM) in adults, and we are currently evaluating the efficacy of this treatment. Therefore, this phase I/II clinical research trial is an extension of that trial in that we seek to test the hypothesis that intra-arterial Cetuximab and Bevacizumab is safe and effective in the treatment of relapsed/refractory glioma in patients \<22 years of age. We expect that this project will provide important information regarding the utility of SIACI Cetuximab and Bevacizumab therapy for malignant glioma in patients \<22 years of age and may alter the way these drugs are delivered to our patients in the near future.
This pilot clinical trial compares gadobutrol with standard of care contrast agents, gadopentetate dimeglumine or gadobenate dimeglumine, before dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain. Gadobutrol is a type of contrast agent that may increase DCE-MRI sensitivity for the detection of tumors or other diseases of the central nervous system. It is not yet known whether gadobutrol is more effective than standard of care contrast agents before DCE-MRI in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain.
This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.
This phase I trial studies the side effects and best dose of alisertib when combined with fractionated stereotactic radiosurgery in treating patients with high-grade gliomas that have returned after previous treatment with radiation therapy (recurrent). Alisertib may stop the growth of tumor cells by blocking an enzyme needed for the cells to divide. Radiation therapy uses high energy x rays to kill tumor cells. Stereotactic radiosurgery uses special positioning equipment to send a single high dose of radiation directly to the tumor and cause less damage to normal tissue. Delivering stereotactic radiosurgery over multiple doses (fractionation) may cause more damage to tumor tissue than normal tissue while maintaining the advantage of its accuracy.
To evaluate 18F-FDOPA PET obtained from PET/CT or PET/MRI imaging in patients with newly diagnosed or recurrent gliomas.
This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors
RATIONALE: New imaging procedures, such as fluorine F 18 fluorodopa-labeled PET scan, may help in guiding surgery and radiation therapy and allow doctors to plan better treatment. PURPOSE: This clinical trial studies fluorine F 18 fluorodopa-labeled PET scan in planning surgery and radiation therapy in treating patients with newly diagnosed high- or low-grade malignant glioma
This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.
RATIONALE: Specialized radiation therapy, such as proton beam radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. PURPOSE: This phase I/II trial is studying the best way to give proton beam radiation therapy and to see how well it works in treating patients with low grade gliomas.
This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
Bevacizumab may reduce CNS side effects caused by radiation therapy. This randomized phase II trial is studying how well bevacizumab works in reducing CNS side effects in patients who have undergone radiation therapy to the brain for primary brain tumor, meningioma, or head and neck cancer.
This phase I trial is studying the side effects of fluorine F18 EF5 when given during positron emission tomography to find oxygen in tumor cells of patients who are undergoing surgery or biopsy for newly diagnosed brain tumors. Diagnostic procedures using fluorine F 18 EF5 and positron emission tomography to detect tumor hypoxia may help in planning cancer treatment