Treatment Trials

562 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Study of VAY736 as Single Agent and in Combination With Select Antineoplastic Agents in Patients With Non-Hodgkin Lymphoma
Description

The purpose of this study is to assess the safety, tolerability, pharmacokinetics (PK), immunogenicity and preliminary efficacy of VAY736 alone or in combination with other therapies in patients with NHL in a platform trial.

RECRUITING
A Study to Assess the Adverse Events, Change in Disease Activity, and How Intravenously Infused ABBV-319 Moves Through the Bodies of Adult Participants With Relapsed or Refractory (R/R) Diffuse Large B-cell Lymphoma (DLBCL), Follicular Lymphoma (FL), or Chronic Lymphocytic Leukemia (CLL)
Description

B-cell Lymphoma is an aggressive and rare cancer of a type of immune cells (a white blood cell responsible for fighting infections). Follicular Lymphoma is a slow-growing type of non-Hodgkin lymphoma. Chronic lymphocytic leukemia (CLL) is the most common leukemia (cancer of blood cells). The purpose of this study is to assess the safety, tolerability, pharmacokinetics, and preliminary efficacy of ABBV-319 in adult participants in relapsed or refractory (R/R) diffuse large b-cell lymphoma (DLBCL), R/R follicular lymphoma (FL), or R/R CLL. Adverse events will be assessed. ABBV-319 is an investigational drug being developed for the treatment of R/R DLBCL, R/R FL, or R/R CLL. This study will include a dose escalation phase to determine the doses of ABBV-319 that will be used in the next phase and a dose expansion phase to determine the change in disease activity in participants with R/R DLBCL, R/R FL, and R/R CLL. Approximately 154 adult participants with R/R B cell lymphomas including R/R DLBCL, R/R FL, and R/R CLL will be enrolled in the study in sites world wide. In the Dose Escalation phase of the study participants will receive escalating intravenously infused doses of ABBV-319 in 21-day cycles, until the Phase 2 dose is determined. In the dose expansion phase of the study participants receive intravenously infused ABBV-319 in 21-day cycles. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at an approved institution (hospital or clinic). The effect of the treatment will be frequently checked by medical assessments, blood tests, questionnaires and side effects.

TERMINATED
Denintuzumab Mafodotin (SGN-CD19A) Combined With RCHOP or RCHP Versus RCHOP Alone in Diffuse Large B-Cell Lymphoma or Follicular Lymphoma
Description

This is a Phase 2 study to evaluate the combination of denintuzumab mafodotin in combination with RCHOP or RCHP compared with RCHOP alone as front-line therapy in patients with diffuse large B-cell lymphoma or follicular lymphoma Grade 3b.

TERMINATED
An Efficacy and Safety Proof of Concept Study of Daratumumab in Relapsed/Refractory Mantle Cell Lymphoma, Diffuse Large B-Cell Lymphoma, and Follicular Lymphoma
Description

The purpose of this study is to assess overall response rate \[ORR, including complete response (CR) and partial response (PR)\], of daratumumab in participants with non-Hodgkin's lymphoma \[a cancer of the lymph nodes (or tissues)-NHL\] and to evaluate association between ORR and CD38 expression level in order to determine a threshold for CD38 expression level in each NHL subtype, above which daratumumab activity is enhanced in participants with relapsed or refractory mantle cell lymphoma, diffuse large B-cell lymphoma, and follicular lymphoma.

TERMINATED
Study of Mocetinostat in Selected Patients With Mutations of Acetyltransferase Genes in Relapsed and Refractory Diffuse Large B-Cell Lymphoma and Follicular Lymphoma
Description

The purpose of this study is to learn if the study drug mocetinostat can slow the progression of cancer in people who have a mutation in CREBBP or EP300 in the genetic makeup of their cancer. The potential side effects of mocetinostat will also be studied.

TERMINATED
A Study to Investigate the Safety, Pharmacokinetics, Pharmacodynamics and Clinical Activity of GSK2816126 in Subjects With Relapsed/Refractory Diffuse Large B Cell Lymphoma, Transformed Follicular Lymphoma, Other Non-Hodgkin's Lymphomas, Solid Tumors and Multiple Myeloma
Description

This is an open-label, multicenter, 2-part study to determine the recommended Phase 2 dose (RP2D) for GSK2816126 given twice weekly by intravenous (IV) infusion. Part 1 will be conducted in adult subjects with relapsed/refractory diffuse large B cell lymphoma (DLBCL), transformed follicular lymphoma (tFL), other Non-Hodgkin's lymphomas (NHL), solid tumors (including castrate resistant prostate cancer) and multiple myeloma (MM) to determine the safety and tolerability of GSK2816126. Expansion cohorts (Part 2) are planned to further explore clinical activity of GSK2816126 at the RP2D in subjects with Enhancer of Zeste 2 (EZH2) wild type and EZH2 mutant positive germinal center B-cell like diffuse large B cell lymphoma (GCB-DLBCL), tFL and MM.

Conditions
TERMINATED
Novel Combinations of CC-122, CC-223, CC-292, and Rituximab in Diffuse Large B-cell Lymphoma and Follicular Lymphoma
Description

First study, at multiple clinical centers, exploring the effects of different combinations of compounds (CC-122, CC-223 ,CC-292 and rituximab) to treat Diffuse Large B Cell Lymphoma (DLBCL) and Follicular Lymphoma

ACTIVE_NOT_RECRUITING
A Study to Evaluate Adverse Events of Subcutaneous (SC) Epcoritamab Administered in the Outpatient Setting in Adult Participants With Relapsed or Refractory Diffuse Large B-Cell Lymphoma and Classic Follicular Lymphoma
Description

B-cell Lymphoma is an aggressive and rare cancer of a type of immune cells (a white blood cell responsible for fighting infections). Classic Follicular Lymphoma is a slow-growing type of non-Hodgkin lymphoma. The purpose of this study is to assess the safety of epcoritamab in adult participants in relapsed or refractory (R/R) diffuse large b-cell lymphoma (DLBCL) who have received at least 1 prior line of systemic antilymphoma therapy including at least 1 anti-CD20 monoclonal antibody-containing therapy or R/R classic follicular lymphoma (cFL). Adverse events will be assessed. Epcoritamab is an investigational drug being developed for the treatment of R/R DLBCL and R/R cFL. Study doctors will assess participants in a monotherapy treatment arm of epcoritamab. Participants will receive escalating doses of epcoritamab, until full dose is achieved. Approximately 184 adult participants with R/R DLBCL and R/R cFL will be enrolled in the study in approximately 80 sites in the United States of America. Participants will receive escalating doses of subcutaneous epcoritamab, until full dose is achieved, in 28-day cycles. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at an approved institution (hospital or clinic). The effect of the treatment will be frequently checked by medical assessments, blood tests, questionnaires and side effects.

COMPLETED
A Study of Atezolizumab in Combination With Either Obinutuzumab Plus Bendamustine or Obinutuzumab Plus (+) Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone (CHOP) in Participants With Follicular Lymphoma (FL) or Rituximab + CHOP in Participants With Diffuse Large B-Cell Lymphoma (DLBCL)
Description

This Phase Ib/II, open-label, multicenter, non-randomized study will evaluate the safety, efficacy, and pharmacokinetics of induction treatment consisting of atezolizumab in combination with either obinutuzumab + bendamustine (Atezo-G-benda) or obinutuzumab + CHOP (Atezo-G-CHOP) in participants with FL and atezolizumab + rituximab + chemotherapy (Atezo-R-CHOP) in participants with DLBCL, followed by post-induction treatment consisting of either atezolizumab plus obinutuzumab (Atezo-G) in participants with FL who achieve a complete response (CR) or partial response (PR) at end of induction (EOI) or atezolizumab alone in participants with DLBCL who achieve a CR at EOI.

COMPLETED
CAR T Cell Receptor Immunotherapy for Patients With B-cell Lymphoma
Description

Background: The National Cancer Institute (NCI) Surgery Branch has developed an experimental therapy for treating patients with B cell lymphomas or leukemias that involves taking white blood cells from the patient, growing them in the laboratory in large numbers, genetically modifying these specific cells with a type of virus (retrovirus) to attack only the tumor cells, and then giving the cells back to the patient. This type of therapy is called gene transfer. In this protocol, we are modifying the patient s white blood cells with a retrovirus that has the gene for anti-cluster of differentiation 19 (CD19) incorporated in the retrovirus. Objective: The purpose of this study is to determine a safe number of these cells to infuse and to see if these particular tumor-fighting cells (anti-CD19 cells) cause tumors to shrink. Eligibility: - Adults age 18-70 with B cell lymphomas or leukemias expressing the CD19 molecule. Design: Work up stage: Patients will be seen as an outpatient at the National Institutes of Health (NIH) clinical Center and undergo a history and physical examination, scans, x-rays, lab tests, and other tests as needed Leukapheresis: If the patients meet all of the requirements for the study they will undergo leukapheresis to obtain white blood cells to make the anti-CD19 cells. Leukapheresis is a common procedure, which removes only the white blood cells from the patient. Treatment: Once their cells have grown, the patients will be admitted to the hospital for the conditioning chemotherapy and the anti-CD19 cells. They will stay in the hospital for about 4 weeks for the treatment. Follow up: Patients will return to the clinic for a physical exam, review of side effects, lab tests, and scans about every 1-3 months for the first year, and then every 6 months to 1 year as long as their tumors are shrinking. Follow up visits will take up to 2 days.

COMPLETED
Pembrolizumab and Combination Chemotherapy in Treating Patients With Previously Untreated Diffuse Large B-cell Lymphoma or Grade 3b Follicular Lymphoma
Description

This pilot phase I trial studies the side effects of pembrolizumab and combination chemotherapy in treating patients with previously untreated diffuse large B-cell lymphoma or grade 3b follicular lymphoma. Monoclonal antibodies, such as pembrolizumab and rituximab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab together with combination chemotherapy may be with a better treatment for diffuse large B-cell lymphoma or follicular lymphoma.

COMPLETED
Safety and Efficacy of BKM120 in Relapsed and Refractory NHL
Description

This is a phase II study evaluating the safety, tolerability and efficacy of BKM120 in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL) or follicular lymphoma (FL).

TERMINATED
Copanlisib and Combination Chemotherapy for the Treatment of Relapsed or Refractory Diffuse Large B-Cell Lymphoma or Relapsed Grade 3b Follicular Lymphoma
Description

This phase I trial studies the best dose of copanlisib when given together with combination chemotherapy (R-GCD) in treating patients with diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory) or grade 3b follicular lymphoma that has come back (relapsed) after 1 prior line of therapy. Copanlisib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as gemcitabine, carboplatin, and dexamethasone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving copanlisib together with R-GCD as second line therapy may improve the complete response rate for patients with diffuse large B-cell lymphoma or follicular lymphoma.

TERMINATED
Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Efficacy of AMG 562 in Subjects With r/r Diffuse Large B-cell Lymphoma, Mantle Cell Lymphoma, or Follicular Lymphoma
Description

Evaluate the safety and tolerability of AMG 562 in adult subjects with DLBCL, MCL, or FL. Estimate the maximum tolerated dose (MTD) and/or a biologically active dose (e.g., recommended phase 2 dose \[RP2D\])

TERMINATED
Safety and Antitumor Activity Study of Loncastuximab Tesirine and Durvalumab in Diffuse Large B-Cell, Mantle Cell, or Follicular Lymphoma
Description

The purpose of this phase 1 study is to evaluate the safety and anti-tumor activity of Loncastuximab Tesirine (ADCT-402) and Durvalumab in participants with Advanced Diffuse Large B-Cell Lymphoma, Mantle Cell Lymphoma, or Follicular Lymphoma

ACTIVE_NOT_RECRUITING
Pembrolizumab With Rituximab or Obinutuzumab in Treating Patients With Relapsed or Refractory Follicular Lymphoma or Diffuse Large B Cell Lymphoma
Description

This phase II trial studies how well pembrolizumab with rituximab or obinutuzumab work in treating patients with follicular lymphoma or diffuse large B cell lymphoma that has come back (recurrent) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Rituximab and obinutuzumab are monoclonal antibodies. They bind to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving pembrolizumab with rituximab or obinutuzumab may help kill more cancer cells in patients with follicular lymphoma or diffuse large B cell lymphoma.

ACTIVE_NOT_RECRUITING
Rituximab and Pembrolizumab With or Without Lenalidomide in Treating Patients With Relapsed Follicular Lymphoma and Diffuse Large B-Cell Lymphoma
Description

This phase II trial studies how well rituximab and pembrolizumab with or without lenalidomide works in treating patients with follicular lymphoma and diffuse large B-cell lymphoma that has returned after a period of improvement. Immunotherapy with monoclonal antibodies, such as rituximab and pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving rutuximab with pembrolizumab and lenalidomide may work better at treating follicular lymphoma and diffuse large B-cell lymphoma.

COMPLETED
A Safety and Pharmacology Study of Atezolizumab (MPDL3280A) Administered With Obinutuzumab or Tazemetostat in Participants With Relapsed/Refractory Follicular Lymphoma and Diffuse Large B-cell Lymphoma
Description

This open-label, multicenter, global study is designed to assess the safety, tolerability, preliminary efficacy, and pharmacokinetics of intravenous atezolizumab (MPDL3280A) and obinutuzumab in participants with refractory or relapsed follicular lymphoma (FL) or atezolizumab and obinutuzumab or tazemetostat administered in participants with refractory or relapsed diffuse large B-cell lymphoma (DLBCL). The anticipated duration of this study is approximately 4.5 years.

Conditions
COMPLETED
Lenalidomide, Rituximab, and Combination Chemotherapy in Treating Patients With Newly Diagnosed Stage II, Stage III, or Stage IV Diffuse Large Cell or Follicular B-Cell Lymphoma
Description

RATIONALE: Lenalidomide may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin, vincristine, and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide together with rituximab and combination chemotherapy may kill more cancer cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of lenalidomide when given together with rituximab and combination chemotherapy and to see how well they work in treating patients with newly diagnosed stage II, stage III, or stage IV diffuse large cell or follicular B-cell lymphoma.

Conditions
NOT_YET_RECRUITING
Epcoritamab Plus Standard of Care Platinum-Based Chemotherapy and Autologous Hematopoietic Cell Transplant for the Treatment of Relapsed or Refractory Large B-cell Lymphoma
Description

This phase II trial tests how well epcoritamab in combination with standard of care (SOC) platinum-based chemotherapy (rituximab, ifosfamide, carboplatin, etoposide \[RICE\], rituximab, cytarabine, dexamethasone, oxaliplatin or carboplatin RDHAP/X\] or gemcitabine and oxaliplatin \[Gem/Ox\]) and autologous hematopoietic cell transplant (HCT) works in treating patients with large B-cell lymphoma (LBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Epcoritamab, a type of bispecific T-cell engager, binds to a protein called CD3, which is found on T cells (a type of white blood cell). It also binds to a protein called CD20, which is found on B cells (another type of white blood cell) and some lymphoma cells. This may help the immune system kill cancer cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells and some types of cancer cells. This may help the immune system kill cancer cells. Chemotherapy drugs, such as ifosfamide, etoposide phosphate, cytarabine, and gemcitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. An autologous HCT is a procedure in which blood-forming stem cells (cells from which all blood cells develop) are removed, stored, and later given back to the same person. Giving epcoritamab in combination with SOC platinum-based chemotherapy, such as RICE, RDHAP/X and Gem/Ox, and autologous HCT may kill more cancer cells in patients with relapsed or refractory LBCL.

NOT_YET_RECRUITING
Odronextamab for the Treatment of Relapsed and Refractory Diffuse Large B-cell Lymphoma Before and After Chimeric Antigen Receptor T-cell Therapy
Description

This phase II trial tests how well odronextamab works before and after standard of care (SOC) chimeric antigen receptor (CAR) T-cell therapy in treating patients with diffuse large B-cell lymphoma (DLBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). CAR-T cell therapy is the SOC treatment most patients receive when other treatments have failed. CAR-T cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a CAR. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Odronextamab is a monoclonal antibody that is called bispecific, as it individually targets 2 cell proteins, CD20 and CD3. Proteins are part of each cell in the body, which work together like little machines for the cell to function. CD20 is a protein that is found on the surface of both normal B-cells and B-cells that make up certain cancers, like DLBCL. CD3 is a protein that is found on the surface of T cells. T-cells and normal B-cells are types of white blood cells in the body and are a part of the immune system that fights infections. Odronextamab is designed to help T-cells find and kill the B-cells including the cancer cells in DLBCL. Giving odronextamab before and after CAR T-cell therapy may improve response in patients with relapsed or refractory DLBCL.

SUSPENDED
Genetically Engineered Cells (EGFRt/19-28z/IL-12 CAR T Cells) for the Treatment of Relapsed or Refractory CD19+ Hematologic Malignancies
Description

This phase I trial tests the safety, side effects, and best dose of genetically engineered cells called EGFRt/19-28z/IL-12 CAR T cells, and to see how they work in treating patients with hematologic malignancies that makes a protein called CD19 (CD19-positive) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Chimeric Antigen Receptor (CAR) T-cell Therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. To improve the effectiveness of the modified T cells and to help the immune system fight cancer cells better, the modified T cells given in this study will include a gene that makes the T cells produce a cytokine (a molecule involved in signaling within the immune system) called interleukin-12 (IL-12). The researchers think that IL-12 may improve the effectiveness of the modified T cells, and it may also strengthen the immune system to fight cancer. Giving EGFRt/19-28z/IL-12 CAR T cells may be safe and tolerable in treating patients with relapsed or refractory CD19+ hematologic malignancies.

RECRUITING
Tafasitamab and Lenalidomide Followed by Tafasitamab and ICE As Salvage Therapy for Transplant Eligible Patients with Relapsed/ Refractory Large B-Cell Lymphoma
Description

This phase II clinical trial evaluates tafasitamab and lenalidomide followed by tafasitamab and the carboplatin, etoposide and ifosfamide (ICE) regimen as salvage therapy for transplant eligible patients with large B-cell lymphoma that has come back (relapsed) or has not responded to treatment (refractory). Tafasitamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Lenalidomide may have antineoplastic activity which may help block the formation of growths that may become cancer. Drugs used in chemotherapy, such as carboplatin, etoposide and ifosfamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tafasitamab and lenalidomide followed by ICE may be a better treatment for patients with relapsed or refractory large B-cell lymphomas.

Conditions
Recurrent B-Cell Lymphoma, Unclassifiable, with Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin LymphomaRecurrent Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent Grade 3b Follicular LymphomaRecurrent High Grade B-Cell Lymphoma with MYC and BCL2 or BCL6 RearrangementsRecurrent High Grade B-Cell Lymphoma with MYC, BCL2, and BCL6 RearrangementsRecurrent High Grade B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg TypeRecurrent Primary Mediastinal (Thymic) Large B-Cell LymphomaRecurrent T-Cell/Histiocyte-Rich Large B-Cell LymphomaRecurrent Transformed Follicular Lymphoma to Diffuse Large B-Cell LymphomaRecurrent Transformed Marginal Zone Lymphoma to Diffuse Large B-Cell LymphomaRefractory B-Cell Lymphoma, Unclassifiable, with Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin LymphomaRefractory Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRefractory Grade 3b Follicular LymphomaRefractory High Grade B-Cell Lymphoma with MYC and BCL2 or BCL6 RearrangementsRefractory High Grade B-Cell Lymphoma with MYC, BCL2, and BCL6 RearrangementsRefractory High Grade B-Cell Lymphoma, Not Otherwise SpecifiedRefractory Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg TypeRefractory Primary Mediastinal (Thymic) Large B-Cell LymphomaRefractory T-Cell/Histiocyte-Rich Large B-Cell LymphomaRefractory Transformed Follicular Lymphoma to Diffuse Large B-Cell LymphomaRefractory Transformed Marginal Zone Lymphoma to Diffuse Large B-Cell Lymphoma
WITHDRAWN
Loncastuximab Tesirine in Combination With Chemotherapy Prior to Stem Cell Transplant for the Treatment of Recurrent or Refractory Diffuse Large B-Cell Lymphoma
Description

This phase I trial studies the side effects and best dose of loncastuximab tesirine in combination with carmustine, etoposide, cytarabine, and melphalan (BEAM) chemotherapy regimen in treating patients with diffuse large B-cell lymphoma that has come back (recurrent) or has not responded to treatment (refractory). Loncastuximab tesirine is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as carmustine, etoposide, cytarabine, and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with loncastuximab tesirine may kill more cancer cells.

RECRUITING
Relapsed/Refractory Large B-cell Lymphoma With NT-I7 Post-CD19 CAR T-cell Therapy
Description

This is a multicenter Phase 1b study evaluating the safety, tolerability, and preliminary anti-tumor activity of NT-I7 administration following standard of care CD19 CAR T-cell therapy for eligible subjects with r/r LBCL.

ACTIVE_NOT_RECRUITING
ALX148, Rituximab and Lenalidomide for the Treatment of Indolent and Aggressive B-cell Non-Hodgkin Lymphoma
Description

This phase I/II trial finds out the best dose, possible benefits and/or side effects of ALX148 in combination with rituximab and lenalidomide in treating patients with indolent and aggressive B-cell non-Hodgkin lymphoma. Immunotherapy with ALX148, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody that binds to a protein called CD20 found on B-cells, and may kill cancer cells. Giving ALX148 in combination with rituximab and lenalidomide may help to control the disease.

RECRUITING
Cardiovascular Events Among Adults Patients With Relapsed or Refractory Aggressive B-Cell Lymphoma Treated With Standard of Care Chimeric Antigen Receptor T Cell Therapy
Description

This study characterizes cardiac events following standard of care chimeric antigen receptor T cell therapy in patients with aggressive B-Cell Lymphoma that has come back (relapsed) or does not respond to treatment (refractory). The results from this study may allow a description of these events, their managements and outcome.

RECRUITING
Zanubrutinib in Combination with R-PolaCHP (ZaR-PolaCHP) for Newly Diagnosed Diffuse Large B-Cell Lymphoma
Description

This phase Ib trial seeks to find out the best dose and possible side effects and/or benefits of zanubrutinib in combination with the R-PolaCHP in treating patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL). Zanubrutinib is designed to block a protein called Bruton Tyrosine Kinase in order to stop cancer growth. R-CHOP is the acronym for the combination of five drugs: rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. It is the most widely used chemoimmunotherapy regimen for DLBCL and is considered the standard-of-care treatment for patients with DLBCL. Three of the drugs in R-CHOP (cyclophosphamide, doxorubicin and vincristine) are chemotherapy drugs. Rituximab is a type of immunotherapy and prednisone is a type of steroids.

SUSPENDED
Testing CC-486 (Oral Azacitidine) Plus the Standard Drug Therapy in Patients 75 Years or Older With Newly Diagnosed Diffuse Large B Cell Lymphoma
Description

This phase II/III trial compares the side effects and activity of oral azacitidine in combination with the standard drug therapy (reduced dose rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisone \[R-miniCHOP\]) versus R-miniCHOP alone in treating patients 75 years or older with newly diagnosed diffuse large B cell lymphoma. R-miniCHOP includes a monoclonal antibody (a type of protein), called rituximab, which attaches to the lymphoma cells and may help the immune system kill these cells. R-miniCHOP also includes prednisone which is an anti-inflammatory medication and a combination of 3 chemotherapy drugs, cyclophosphamide, doxorubicin, and vincristine. These 3 chemotherapy drugs, as well as oral azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Combining oral azacitidine with R-miniCHOP may shrink the cancer or extend the time without disease symptoms coming back or extend patient's survival when compared to R-miniCHOP alone.

ACTIVE_NOT_RECRUITING
19(T2)28z1xx Chimeric Antigen Receptor (CAR) T Cells in People With B-Cell Cancers
Description

The purpose of this study is to test the safety of 19(T2)28z1xx CAR T cells in people with relapsed/refractory B-cell cancers. The researchers will try to find the highest dose of 19(T2)28z1xx CAR T cells that causes few or mild side effects in participants. Once they find this dose, they can test it in future participants to see if it is effective in treating their relapsed/refractory B-cell cell cancers. This study will also look at whether 19(T2)28z1xx CAR T cells work against participants' cancer.