Treatment Trials

48 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Repetitive Transcranial Magnetic Stimulation for the Treatment of Focal Hand Dystonia
Description

This study investigated the short term effects of repeated administrations of repetitive-transcranial magnetic stimulation (rTMS) on clinical changes and investigate neurophysiologic responses to rTMS of the activated motor system in patients with FHD.

RECRUITING
Dystonia Genotype-Phenotype Correlation
Description

The purpose of this study is to (1) investigate the effect of known dystonia-causing mutations on brain structure and function, to (2) identify structural brain changes that differ between clinical phenotypes of dystonia, and to (3) collect DNA, detailed family history, and clinical phenotypes from patients with idiopathic dystonia with the goal of identifying new dystonia-related genes. Investigators will be recruiting both healthy control subjects and subjects with any form of dystonia. For this study there will be a maximum of two study visit involving a clinical assessment, collection of medical and family history, task training session, an MRI using the learned tasks, and finally a blood draw for genetic analysis. In total, these visits will take 3-5 hours. If the dystonia subjects receive botulinum toxin injections for treatment, the participants and their matched controls will be asked to come for a second visit.

TERMINATED
Loss of Depotentiation in Focal Dystonia
Description

Background Focal dystonia is a brain disorder. It affects a muscle or muscles in a specific part of the body. Researchers think it may be related to excessive training or practice. They want to know more about how much training might trigger focal dystonia. Objectives: To study why people develop focal dystonia. To study how brain plasticity changes with focal dystonia. Eligibility: People at least 18 years of age with focal dystonia. Healthy volunteers the same age are also needed. Design: Participants will be screened with a physical exam and questions. They may have blood and urine tests. Participants will have up to 3 testing visits. Participants will have small electrodes stuck on the skin on the hands or arms. Muscle activity will be recorded. Participants will have transcranial magnetic stimulation (TMS). A wire coil will be placed onto the scalp. A brief electrical current will pass through the coil. The current will create a magnetic field that affects brain activity. Participants may be asked to tense certain muscles or do simple actions during TMS. A nerve at the wrist will get weak electrical stimulation. The stimulation may be paired with TMS for very short times. Participants will receive repeated magnetic pulses. Participants will receive a total of 150 pulses during a 10-second period. An entire testing visit will last about 3 hours. ...

COMPLETED
Compare Two Guidance Techniques for Botulinum Toxin Injections for the Treatment of Limb Spasticity and Focal Dystonia
Description

This study seeks to compare the use of ultrasound and electrophysiologic techniques to target muscles for the treatment of spasticity and focal dystonia of the limbs. The purpose of this study is to investigate the use of two ways of locating the muscle for botulinum toxin (BoNT) injection for the treatment of focal hand dystonia and upper limb spasticity. Electrophysiologic guidance, using electrical stimulation, and ultrasound are the standard ways of locating muscles during a treatment of BoNT injection.

COMPLETED
Functional Connectivity in Primary Focal Dystonia
Description

In this study we are looking at primary focal dystonias, including dystonias of the limbs, eyes, jaw or face, neck, and vocal chords. This study will use magnet resonance imaging (MRI) to see how the brain reacts while resting and doing a finger-tapping task. The investigators will test the hypothesis that disturbances in functional connectivity within the motor, affective and cognitive basal ganglia networks in primary focal dystonia (PFD) underlie the motor and non-motor symptoms in this disorder.

Conditions
COMPLETED
Role of Dopamine Receptors in Primary Focal Dystonias
Description

Dystonia is a disabling movement disorder characterized by repetitive patterned or sustained muscle contractions causing twisting or abnormal postures that may afflict 250,000 people in the U.S. While the pathophysiology of dystonia remains uncertain the treatment is rather rudimentary. A better understanding of neural mechanisms of dystonias is not only an invaluable prerequisite for developing better treatment options but also a step toward better understanding of the complex network of basal ganglia. In this study I will investigate if there is any difference between the dopamine receptors and dopamine in people with dystonia and healthy subjects.

COMPLETED
Association Between Focal Dystonia and Complex Regional Pain Syndrome
Description

This study will investigate differences among people with focal dystonia (FD), complex regional pain syndrome (CRPS) and people who have both conditions to learn more about the cause of both disorders. Participants undergo the following procedures in five visits: * Electroencephalography (EEG). Electrodes (metal discs) are placed on the scalp with an electrode cap, a paste or a glue-like substance. The spaces between the electrodes and the scalp are filled with a gel that conducts electrical activity. Brain waves are recorded while the subject lies quietly and sensory stimulation is applied to the thumb or finger. * Magnetic resonance imaging (MRI). This test uses a magnetic field and radio waves to obtain images of body tissues and organs. The patient lies on a table that can slide in and out of the scanner, wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 45 minutes, during which time the patient will be asked to lie still for up to 15 minutes at a time. * Transcranial magnetic stimulation (TMS). An insulated wire coil is placed on the scalp and a brief electrical current is passed through the coil. The current induces a magnetic field that stimulates the brain. There may be a pulling sensation on the skin under the coil and a twitch in muscles of the face, arm or leg. During the stimulation, subjects may be asked to keep their hands relaxed or to contract certain muscles. * Peripheral electrical stimulation. In two experiments, TMS is combined with peripheral electrical stimulation, similar to what is used in nerve conduction studies, to the median nerve at the wrist. There may be muscle twitching. * Surface electromyography. For TMS tests and peripheral electrical stimulation, electrodes are filled with a conductive gel and taped to the skin to record the electrical activity of three muscles on the right hand. * Needle EMG. A needle is inserted into a muscle to record the electrical activity. * Nerve conduction studies. A probe is placed on the skin to deliver a small electrical stimulus, and wires are taped to the skin record the nerve impulses. These studies measure the speed with which nerves conduct electrical impulses and the strength of the connection between the nerve and the muscles. * Skin biopsy. Two sites are biopsied. A local anesthetic is given to numb the area and a 1/4-inch piece of skin is removed with a special tool. * JVP domes. Subjects are tested for their ability to discriminate sensory stimuli in the affected region and on the other side of it. They are asked to discriminate between stamps with grooves of different widths that are applied to the hands or feet.

COMPLETED
Brain Function in Focal Dystonia
Description

Objectives The main objectives of this proposal are (1) to characterize motor learning abnormalities in patients with focal dystonia; (2) to show, using transcranial magnetic stimulation, that this abnormal motor learning went together with an impaired modulation by somatosensory inputs of short and long-interval paired-pulse inhibitions (sICI, lICI) and facilitations (sICF, ICF) of MEPs (ICIs and ICFs are thought to reflect activity of inhibitory and excitatory interneuron's in the primary motor cortex M1); (3) to show that abnormalities of long-term potentiation and long-term depression (LTP/LTD)-like mechanisms (tested using a paired associative stimulation (PAS) intervention), thought to play a crucial role in learning, are associated in dystonia with an abnormal modulation of ICIs and ICFs by somatosensory inputs. Study population 30 patients with a focal upper limb dystonia and 45 healthy volunteers will take part in the main study. 7 patients with a focal upper limb dystonia and 12 healthy volunteers will take part in the control study. Design In the main study: subjects will complete 5 different sessions: visit 1: clinical screening, 1 hour; visit PAS session, 3 hours; visit 3: a minimum of 7 days later, motor learning session, 3 hours; visit 4: follow-up 24 hours later, 1 hour and a half; visit 5, follow-up 48 hours later, 1 hour and a half. During the PAS session they will receive 15 minutes of repeated paired stimulations (transcranial magnetic stimulation -TMS- and peripheral stimulation) thought to produce LTP/LTD like phenomena in M1. During the motor learning sessions they will be asked to perform, as fast as possible, a metronome-paced (0.5 Hz) pinch of their index finger and thumb. They will have 3 blocks of motor practice during the motor learning session. Between each block of motor practice and before and after PAS, while they rest, subjects will receive paired-pulse transcranial magnetic stimulations (TMS) associated or not with peripheral nerve stimulation in order to assess interactions at M1 cortical level between somatosensory incoming volleys and intracortical inhibitory and excitatory interneuron's. In the control study: subjects will complete a unique session. They will receive a PAS intervention. Before and after the PAS intervention, spinal excitability will be tested by the means of H reflexes evoked in wrist flexor muscles. Outcome measures: The behavioral effect of the motor training or of the PAS intervention will be assessed by measuring the mean peak acceleration (MPA) of thumb movement during the blocks of motor practice and the mean maximal peak force (MPF) between the index finger and thumb before and after the blocks of motor practice. The activity of different sets of intracortical interneurons (short and long interval GABA related inhibitions: sICI, lICI, intracortical glutamate-related facilitation: ICF and short interval facilitation: sICF) can be tested using paired-pulse TMS paradigms. The effect of learning (or of PAS intervention) on the interaction between somatosensory afferent input and intracortical processes will be assessed by comparing the amount of sICI, lICI, ICF and sICF when associated or not with a peripheral nerve stimulation (median and ulnar nerve stimulation) in a trained muscle (flexor pollicis brevis: FPB) and a non-trained muscle (abductor digiti minimi: ADM) at different times during and after the motor learning or the PAS intervention. The effect of PAS on spinal cord excitability will be assessed by comparing the size of the H reflex before and after PAS.

Conditions
COMPLETED
Survey of Sensory and Motor Tricks in Focal Dystonia
Description

This study will collect information on (tricks) patients with focal dystonia use to relieve their symptoms. Dystonia is a movement disorder caused by sustained muscle contractions often causing twisting and abnormal posturing. Dystonia may be generalized, affecting at least one leg and the trunk of the body, segmental, affecting adjacent body parts, or focal, affecting a single body part, such as the hand or eyelid. It may be task-specific, such as writer's, musician's or sportsman's cramps. Some patients with focal dystonia use (tricks), such as touching the face or hand, to stop or alleviate the abnormal movement. This study will survey the types of tricks people with focal dystonia use in order to learn more about the disorder. Patients 18 years of age and older with focal dystonia may be eligible for this study. Candidates will be screened for eligibility with a medical history, clinical evaluation, and review of their medical records. In one 30- to 45-minute clinic visit, participants will be interviewed about their dystonia symptoms and the tricks they use to relieve the symptoms. They may be asked to show the investigators how the tricks work

Conditions
COMPLETED
Transcranial Magnetic Stimulation and Electrical Stimulation of Nerves to Study Focal Dystonia
Description

This study will use transcranial magnetic stimulation (TMS) and electrical stimulation of nerves to examine how the brain controls muscle movement in focal hand dystonia (writer's cramp). Normally, when a person moves a finger, the brain's motor cortex prevents the other fingers from moving involuntarily. Patients with focal hand dystonia have difficulty with individualized finger movements, possibly due to increased excitability of the motor cortex. Musicians, writers, typists, athletes and others whose work involves frequent repetitive movements may develop focal dystonia of the hand. Healthy normal volunteers and patients with focal dystonia 18 years of age and older may be eligible for this study. For the TMS procedure, subjects are seated in a comfortable chair with their hands placed on a pillow on their lap. An insulated wire coil is placed on the scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. This may cause muscle, hand or arm twitching if the coil is near the part of the brain that controls movement, or it may induce twitches or transient tingling in the forearm, head or face muscles. Subjects will be asked to move a finger. Just before this movement, a brief electrical stimulation will be applied to the end of either the second or fifth finger. Metal electrodes will be taped to the skin over the muscle for computer recording of the electrical activity of the hand and arm muscles activated by the stimulation. The testing will last 2-3 hours. ...

COMPLETED
Amlodipine Plus Botulinum Toxin for Focal Dystonia
Description

Objective: To determine if the calcium channel blockers, amlodipine can augment the effect of botulinum toxin injections in the treatment of focal dystonia. Study Population: 20 patients with cervical dystonia Design: Double-bind, placebo-controlled clinical trail. Outcome measures: For patients: dystonia rating scales (Twistrs, Fahn-Marsden dystonia scale, NINDS subjective patient rating scale), and hand grip strength. For healthy volunteers: Amplitude of EDB MEP.

Conditions
COMPLETED
Sensory Training to Treat Focal Dystonia
Description

This study will examine the effectiveness of Braille reading as a sensory training program for improving symptoms of focal (localized) dystonia, a movement disorder caused by sustained muscle contractions. Musicians, writers, typists, athletes and others whose work involves frequent repetitive movements may develop focal dystonia of the hand. Dystonia patients have an impaired sense of touch, and it is thought that symptoms may improve with sensory tactile (touch) training. Patients with task-specific dystonia and healthy normal volunteers may be eligible for this 8-week study. Patients will undergo evaluation of their dystonia and a complete neurologic examination. Healthy volunteers will have a complete physical examination. On the first day of the study, after 4 weeks and after 8 weeks, all participants will have a gap detection test for sensory perception testing. The test uses eight plastic devices called JVP-Domes with ridges of different widths on the surface. The subject's arm and hand are held in palm-up position and the right index finger is tested for about 1 second 20 times with each dome. The subject is asked to report whether the direction of the dome is vertical or horizontal. The test takes about 30 minutes. Patients with dystonia will also have a their symptoms evaluated at these visits. The evaluation involves completing a written questionnaire and writing a paragraph. All participants will be trained in Braille reading at NIH. Sessions will be given every day the first week, twice a week the second and third weeks, and once a week the following weeks.

COMPLETED
Mexiletine for the Treatment of Focal Dystonia
Description

Dystonia refers to a condition characterized by involuntary muscle contractions that may cause pain, abnormal posture, or abnormal movements. The cause of dystonia is unknown, but some researchers believe it is a result of overactivity in the areas of the brain responsible for movement (basal ganglia). Lidocaine is a drug used for the treatment of irregular heartbeats. It is given by injection. Recent studies have shown that lidocaine is also effective for the treatment dystonia. Mexiletine is a drug similar to lidocaine used for irregular heartbeats that can be taken by mouth. Researchers would like to test the effectiveness of Mexiletine for the treatment of dystonia. Patients participating in the study will be divided into two groups; Group 1 will take Mexiletine for six weeks then stop. They will remain drug free for one week then begin taking a placebo "inactive sugar pill" for an additional six weeks. Group 2 will take a placebo "inactive sugar pill" for six weeks then stop. They will remain drug free for one week then begin taking a Mexiletine for an additional six weeks. Throughout the study researchers will test the effectiveness of the treatment by evaluating patients using clinical rating scales and neurophysiological studies. In addition, researchers will test patient's reflexes in an attempt to find out where mexiletine works in the nervous system.

RECRUITING
MRgFUS Pallidotomy for the Treatment of Task Specific Focal Hand Dystonia (TSFD)
Description

The purpose of this study is to assess the safety and effectiveness of MRI-guided focused ultrasound (MRgFUS) for treating task specific focal hand dystonias (TSFD). TSFD is a type of dystonia that affects hand movements during specific tasks such as writing, playing instruments or typing, often causing involuntarily movements or cramping.

TERMINATED
Depotentiation in People With Focal Hand Dystonia
Description

Background: - Focal hand dystonia (FHD) causes muscles to contract, leading to abnormal movements or postures. Musicians, writers, and athletes often get it. Researchers want to study how patients with this condition learn, a process of the brain that depends on a property called plasticity. Objective: - To study brain plasticity in people with FHD. Eligibility: * Right-handed adults 18 years and older with FHD. * Healthy, right-handed adult volunteers. Design: * Participants will be screened with medical history, physical exam, pregnancy test, and questionnaire about their right-handedness. * Participants will have 2 study visits on 2 different days. * Participants will sit in a chair and have up to 30 Transcranial Magnetic Stimulation (TMS) pulses on the left side of the head. A brief electrical current passes through a wire coil on the scalp. They will hear a click and may feel a pulling on the skin or muscle twitches. They may have to keep their eyes open and remain alert, tense certain muscles, or perform simple finger movements. * Forty more pulses, with 10 seconds between, will be given on the left side of the head. Some will be small, some big. * Researchers will measure muscle response through small electrodes taped to the right hand. * A cloth cap will be put on the participant s head. Researchers will write on tape on the cap. * Participants will have the r-PAS. An electrical stimulator will be placed on the nerve at the right wrist. Repeated magnetic pulses will be delivered in trains or short bursts together with electrical stimulation of nerve. Participants will receive up to 840 pulses. * Participants will be contacted after a few days for a follow-up check.

TERMINATED
Acetyl Hexapeptide-8 for Blepharospasm
Description

Background: - Blepharospasm is caused by excessive contraction of the muscles that close the eye. One treatment is botulinum neurotoxin (BoNT), which works by weakening those muscles. Like BoNT, acetyl hexapeptide-8 (AH-8) works to weaken the muscles, but is available as a skin cream. AH-8 is the active ingredient in a number of cosmetic creams used to treat wrinkles. Researchers thought that AH-8 cream could be used to treat blepharospasm, but the original dose studied was not very effective. They want to try a higher dose of AH-8 in a cream to see if it can be a more effective treatment. Objectives: - To see if AH-8 cream can improve the symptoms of blepharospasm. Eligibility: - Individuals at least 18 years of age who have blepharospasm that is severe enough to require treatment. Design: * This study will involve up to eight study visits. * Participants will be screened with a physical exam and medical history. They will answer questions about their symptoms. They will also have a blink test to see how severe the blepharospasm is. At this visit, participants will receive one of three types of cream. One cream will have a low dose of AH-8, one will have a higher dose of AH-8, and the other will be a placebo (no AH-8). * One month later, participants will have a followup visit, with tests similar to the first visit. They will also receive more of the cream. * One month later, participants will have another visit with the same tests. They will be videotaped at this visit to study their facial movements. Those who have responded to the treatment will continue to use the cream. Those who have not responded will be offered the chance to have BoNT injections, and will stop taking the cream. * One month later, participants who had BoNT injections will have a final visit to check for possible side effects. Those who continued to take the cream will continue on the study. * The fifth and sixth visits will involve the same tests as before. At the seventh visit, remaining participants will be offered the chance to have BoNT injections, and will stop taking the cream. * The final visit will check for any side effects from the cream or the injections.

Conditions
COMPLETED
rTMS and Retraining in Focal Hand Dystonia
Description

This study is exploring a new experimental procedure in dystonia called repetitive transcranial magnetic brain stimulation (TMS) combined with rehabilitation. The purpose of the study is to determine whether repetitive TMS is effective as a treatment to reduce symptoms in dystonia as demonstrated by improved motor performance.

Conditions
COMPLETED
A Study of Acetyl Hexapeptide-8 (AH8) in Treatment of Blepharospasm
Description

Background: * Blepharospasm is caused by excessive contraction of the muscles that close the eye. It can be treated with injections of botulinum neurotoxin (BoNT), which works by weakening those muscles. * Acetyl Hexapeptide-8 (AH-8) is the active ingredient in a number of cosmetic creams used to treat wrinkles, and is marketed under the trade name Argireline(Copyright). Like BoNT, AH-8 works to weaken the muscles, but is available as a skin cream instead of an injection. AH-8 has never been used to treat people with blepharospasm. Objectives: - To determine if AH-8 can be used as part of a treatment regimen for blepharospasm. Eligibility: - Individuals 18 years of age and older who have blepharospasm and have been receiving successful treatment with botulinum toxin injections. Design: * Participants will be involved in the study for a maximum of 7 months. * Patients will have a complete physical and neurological exam, and will be asked questions about their blepharospasm. Patients will then receive BoNT injections in the same areas of the muscle around the eye and at the same doses that have been effective previously. * After the injections, patients will receive a container of either the active cream (with AH-8) or cream without AH-8, and will be instructed on how to apply it. * Patients will return 1 month after the first visit for another neurologic exam and questions, and will be asked about any side effects. Another supply of cream will be given. * Five additional visits will take place on a monthly basis, and patients will be given additional supplies of the cream as needed. Patients will stop participating in the study if they require another BoNT injection for blepharospasm. The study will end after 7 months.

Conditions
COMPLETED
fMRI Studies of Task Specificity in Focal Hand Dystonia
Description

This study will examine how the brain makes involuntary spasms and contractions in patients with focal hand dystonia (FHD). Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In FHD, only the hand is involved. The study will use functional magnetic resonance imaging (fMRI, see below) to study which areas of the brain are primarily affected in FHD and better understand how brain changes produce dystonia symptoms. Normal right-handed volunteers and patients with FHD who are 18-65 years of age may be eligible for this study. Candidates are screened with a medical history and physical and neurological examinations. Women who can become pregnant have a urine pregnancy test. All participants undergo fMRI. This test uses a strong magnetic field and radio waves to obtain images of body organs and tissues. The subject lies on a table that is moved into the scanner (a metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 90 minutes, during which time the patient is asked to lie still for 10-15 minutes at a time. During the procedure, subjects are asked to perform some tasks, including writing, tapping with their hand, and drawing in a zigzag motion. Each task is performed using the right hand, left hand and right foot.

Conditions
COMPLETED
Neurophysiology of Task-Specificity of Focal Hand Dystonia
Description

This study will examine how the brain coordinates movement in patients with focal hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. This study will use transcranial magnetic stimulation (TMS, see below) to study how the brain plans movement. Healthy volunteers and patients with focal hand dystonia 18 years of age and older may be eligible for this study. Healthy subjects may participate in one, two or three of the experiments described below. Patients with dystonia may participate in experiments one and three. Before each experiment, each subject is asked about his/her medical and neurologic history, complete questionnaires and will undergo a brief physical examination. Experiment 1 * Surface EMG: Small electrodes are taped to the skin over the arm to measure the electrical activity of muscles. * TMS: A wire coil is held on the subject's scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. During the stimulation, the subject may be asked to tense certain muscles slightly or perform other simple actions. The stimulation may cause a twitch in muscles of the face, arm, or leg, and the subject may hear a click and feel a pulling sensation on the skin under the coil. Experiment 2 (Two visits.) * Visit 1: Magnetic resonance imaging (MRI): This test uses a magnetic field and radio waves to obtain images of body tissues and organs. The patient lies on a table that is moved into the scanner (a metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 90 minutes, during which time the patient will be asked to lie still for up to 30 minutes at a time. * Visit 2: Surface EMG and TMS Experiment 3 -Surface EMG and TMS - During the TMS, subjects are asked to respond to shapes on a computer screen by pushing a button or pressing a foot petal.

Conditions
COMPLETED
Brain Changes in Patients With Focal Hand Dystonia
Description

This study will examine how chemical changes in the brain produce symptoms of hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. The study will use positron emission tomography (PET) to find our which areas of the brain in patients with focal hand dystonia differ from healthy volunteers without focal hand dystonia. Healthy volunteers and patients with focal hand dystonia between 18 and 65 years of age may be eligible for this study. Candidates are screened with a medical history and physical and neurological examinations. Participants undergo the following procedures: * PET scanning: The PET scanner is shaped like a doughnut. The subject lies on a bed that can slide in and out of the scanner. A custom-molded plastic mask is placed on the face and head to support the head and prevent it from moving during scanning. Two radioactive substances - five doses (one per scan) of \[15 O\] water and one dose of \[11C\] flumazil are injected into the body through a vein. The dose of injected radioactive substance is very small, and they are not harmful to the body. The \[15 O\] water doses are injected during the first hour and scans are taken every 10 minutes. The \[11C\] flumazil is injected during the second hour. The radioactive substances are detected by the PET scanner and provide information on the functioning of the brain chemistry. * MRI scanning: MRI uses a magnetic field and radio waves to produce images of body tissues and organs. The patient lies on a table that is moved into the scanner (a narrow cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. Scanning time for this study will be less than one hour. Subjects may be asked to lie still for up to 10 minutes at a time.

Conditions
COMPLETED
Quantifying Musical Performance After Treatment With Myobloc in Musician's Dystonia
Description

This study uses a computerized method of musical instrument digital interface (MIDI) quantification of performance before and after treatment with botulinum toxin type B (Myobloc ®, Solstice Neurosciences). Myobloc is a purified and diluted form of botulinum toxin used medically to relax unwanted muscle spasms and movements. The aim of the study is to determine the feasibility of quantifying change in performance following treatment.

Conditions
COMPLETED
EEG and EMG Studies of Hand Dystonia
Description

This study will examine how the brain operates during execution and control of voluntary movement and what goes wrong with these processes in disease. It will use electroencephalography (EEG) and electromyography (EMG) to compare brain function in normal subjects and in patients with focal hand dystonia. In dystonia, involuntary muscle movements, or spasms, cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one region of the body, such as the hand, neck or face. EEG measures the electrical activity of the brain. The activity is recorded using wire electrodes attached to the scalp or mounted on a Lycra cap placed on the head. EMG measures electrical activity from muscles. It uses wire electrodes placed on the skin over the muscles. Adult healthy normal volunteers and patients with focal hand dystonia may be eligible for this study. Patients will be selected from NINDS's dystonia patient database. Participants will sit in a semi-reclining chair in a darkened room and be asked to move either their right index finger, right foot, or the angle of their mouth on the right side at a rate of one movement every 10 seconds. Brain and muscle activity will be measured during this task with EEG and EMG recordings.

Conditions
COMPLETED
Motor Training to Treat Hand Dystonia
Description

This study will evaluate the effect of motor training on focal hand dystonia in people with writer's cramp and will examine whether this training affects excitability of the motor cortex of the brain. In dystonia, muscle spasms cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one part of the body, such as the hand, neck or face. Patients with focal hand dystonia have difficulty with individualized finger movements, which may be due to increased excitability of the motor cortex. Patients with hand dystonia 21 years of age or older may be eligible for this 2-month study. Those taking botulinum toxin injections must stop medication 3 months before entering the study. Participants will undergo a complete neurologic examination. They will undergo motor training with "constraint-induced movement therapy." This therapy involves constraining some fingers while allowing others to move. Participants will have the following tests and procedures at baseline (before motor training), after 4 weeks of motor training, and again after 8 weeks: * Handwriting analysis - A computerized program evaluates the degree of "automatic movements" the patient uses in writing, as well as writing pressure and speed. * Symptoms evaluation - Patients fill out a written questionnaire about symptoms and rate their improvement, if any, after training. * Transcranial magnetic stimulation - The patient is seated in a comfortable chair, and an insulated wire coil is placed on the scalp. Brief electrical currents pass through the coil, creating magnetic pulses that travel to the brain. These pulses generate very small electrical currents in the brain cortex, briefly disrupting the function of the brain cells in the stimulated area. The stimulation may cause muscle twitching or tingling in the scalp, face, arm or hand. During the stimulation, the patient is asked to slightly tense certain muscles in the hand or arm or perform simple actions. Electrodes are taped to the skin over the muscles activated by the stimulation, and the electrical activity in the muscles will be recorded with a computer. * Electroencephalogram (EEG) - Wire electrodes are taped to the scalp or placed on a Lycra cap the patient wears to record the brain's electrical activity. Participants will have 50-minute motor training sessions 3 times during the first week of the study, twice the second week and once each in weeks 3 and 4. In addition, they will be required to practice the training at home for 25 minutes each day during week 1 and 50 minutes each day for the remaining 3 weeks. Fingers not being trained will be splinted.

Conditions
RECRUITING
Effects of Neuromodulation in Laryngeal Dystonia
Description

Laryngeal dystonia (LD) causes excessive vocal fold abduction (opening) or adduction (closing) leading to decreased voice quality, job prospects, self-worth and quality of life. Individuals with LD often experience episodic breathy voice, decreased ability to sustain vocal fold vibration, frequent pitch breaks and in some cases, vocal tremor. While neuroimaging investigations have uncovered both cortical organization and regional connectivity differences in structures in parietal, primary somatosensory and premotor cortices of those with LD, there remains a lack of understanding regarding how the brains of those with LD function to produce phonation and how these might differ from those without LD. Intervention options for people with LD are limited to general voice therapy techniques and Botulinum Toxin (Botox) injections to the posterior cricoarytenoid (PCA) and/or TA (thyroarytenoid) often bilaterally, to alleviate muscle spasms in the vocal folds. However, the effects of injections are short-lived, uncomfortable, and variable. To address this gap, the aim of this study is to investigate the effectiveness of repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, in assessing cortical excitability and inhibition of laryngeal musculature. Previous work conducted by the investigator has demonstrated decreased intracortical inhibition in those with adductor laryngeal dystonia (AdLD) compared to healthy controls. The investigators anticipate similar findings in individuals with with other forms of LD, where decreased cortical inhibition will likely be noted in the laryngeal motor cortex. Further, following low frequency (inhibitory) rTMS to the laryngeal motor brain area, it is anticipated that there will be a decrease in overactivation of the TA muscle. To test this hypothesis, a proof-of-concept, randomized study to down-regulate cortical motor signal to laryngeal muscles will be compared to those receiving an equal dose of sham rTMS. Previous research conducted by the investigator found that a single session of the proposed therapy produced positive phonatory changes in individuals with AdLD and justifies exploration in LD.

COMPLETED
Non-Motor Features of Cervical Dystonia (CD)
Description

This study will examine the prevalence of four previously identified non-motor markers in a population of cervical dystonia patients, unaffected family members, and healthy volunteers in an attempt to identify a distinct combination of non-motor symptoms that may be indicative of disease development.

COMPLETED
Neurophysiologic Study of Patient With Essential Tremor and Dystonic Tremor
Description

Background: Essential tremor is when a person has tremor, but no other neurological symptoms. Dystonic tremor is when a person also has dystonia. Dystonia is a condition in which muscle contraction causes changes in posture. Researchers do not fully know what areas of the brain cause these tremors, or how the types differ. They also do not know what tests can identify the differences. Objective: To look at differences between essential tremor and dystonic tremor. Eligibility: People ages 18 and older with or without tremor Design: Participants will be screened with medical history, physical exam, and urine tests. Those with tremor will complete questionnaires about how tremor affects them. The screening and study visits can be done on the same day or on separate days. Participants will have 1 or 2 study visits. These include magnetic resonance imaging (MRI) and tremor testing. For MRI, participants will lie on a table that slides in and out of a cylinder that takes pictures. Sensors on the skin measure breathing, heart rate, and muscle activity. This takes about 2 hours. Tremor testing will include transcranial magnetic stimulation (TMS), electrical stimulation of the fingers, doing a movement task, and recording of tremor movements. For TMS, two wire coils will be held on the scalp and a brief magnetic field will be produced. A brief electrical current will pass through the coils. For the other tests, small sticky pad electrodes will be put on the skin. Participants will move their hand when they hear a sound. They will get weak electrical shocks to their fingers. These tests will take 3-4 hours. Participants can take part in either or both parts of the study.

ACTIVE_NOT_RECRUITING
Deep Brain Stimulation Surgery for Focal Hand Dystonia
Description

Researchers want to test a procedure called deep brain simulation (DBS) to treat focal hand dystonia (FHD). A device called a neurostimulator is placed in the chest. It is attached to wires placed in brain areas that affect movement. Stimulating these areas can help block nerve signals that cause abnormal movements. Objectives: To test DBS as treatment for FHD. To learn about brain and nerve cell function in people with dystonia. Eligibility: People ages 18 and older with severe FHD who have tried botulinum toxin treatment at least twice Design: Participation lasts 5 years. Participants will be screened with: Medical history Physical exam Videotape of their dystonia Blood, urine, and heart tests Brain MRI scan Chest X-ray Neuropsychological tests: answering questions, doing simple actions, and taking memory and thinking tests. Hand movement tests Participants will have surgery: A frame fixes their head to the operating table. A small hole is made in the skull. Wires are inserted to record brain activity and stimulate the brain while they do simple tasks. The wires are removed and the DBS electrode is inserted into the hole. The neurostimulator is placed under the skin of the chest, with wires running to the electrode in the brain. They will have CT and MRI scans during surgery. Participants will recover in the hospital for about 1 week. The neurostimulator will be turned on 1 4 weeks after discharge. Participants will have regular visits until the study ends. Visits include: Checking symptoms and side effects MRI Movement, thinking, and memory tests If the neurostimulator s battery runs out, participants will have surgery to replace it.

COMPLETED
Cholinergic Receptor Imaging in Dystonia
Description

Background: Dystonia is a movement disorder in which a person s muscles contract on their own. This causes different parts of the body to twist or turn. The cause of this movement is unknown. Researchers think it may have to do with a chemical called acetylcholine. They want to learn more about why acetylcholine in the brain doesn t work properly in people with dystonia. Objective: To better understand how certain parts of the brain take up acetylcholine in people with dystonia. Eligibility: Adults at least 18 years old who have DYT1 dystonia or cervical dystonia. Healthy adult volunteers. Design: Participants will be screened with a medical history, physical exam, and pregnancy test. Study visit 1: Participants will have a magnetic resonance imaging (MRI) scan of the brain. The MRI scanner is a metal cylinder in a strong magnetic field that takes pictures of the brain. Participants will lie on a table that slides in and out of the cylinder. Study visit 2: Participants will have a positron emission tomography (PET) scan. The PET scanner is shaped like a doughnut. Participants will lie on a bed that slides in and out of the scanner. A small amount of a radioactive chemical that can be detected by the PET scanner will be given through an IV line to measure how the brain takes up acetylcholine. ...

TERMINATED
Genetics of Motor Learning
Description

Background: - New studies in human genetics have revealed information about genetic connections to memory and motor behavior. Researchers are interested in investigating the role of genetics in motor learning, in conjunction with related studies taking place in the Human Motor Control Section of the National Institute of Neurological Diseases and Stroke (NINDS). Participants in motor learning studies conducted at NINDS will be asked to provide blood samples for further evaluation. Objectives: - To create a repository of blood samples from patients and healthy subjects who are participating in NINDS motor learning studies. Eligibility: - Individuals between 18 and 100 years of age who are or will be participating in motor learning research studies at the National Institutes of Health. Design: * Blood draws for genetic testing will usually be done on the same day as the motor learning study. Participants will provide one blood sample for research. * No treatment will be provided under this study....