Treatment Trials

6 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Repetitive Transcranial Magnetic Stimulation for the Treatment of Focal Hand Dystonia
Description

This study investigated the short term effects of repeated administrations of repetitive-transcranial magnetic stimulation (rTMS) on clinical changes and investigate neurophysiologic responses to rTMS of the activated motor system in patients with FHD.

COMPLETED
Incobotulinum Toxin A (Xeomin®) As A Treatment For Focal Task-Specific Dystonia Of The Musician's Hand
Description

The investigational drug being studied in this protocol is Incobotulinumtoxin A (Xeomin®). Botulinum toxin (BoNT) prevents the release of the acetylcholine from peripheral nerves, inhibiting muscle contractions. BoNT is effective in relaxing overactive muscles. In musician's dystonia, the ability to reduce abnormally overactive muscles in the hand can be critical for the musical professional to continue his or her career. With the use of EMG/electrical stimulation and/or ultrasound guidance, the injector can precisely localize the individual muscles that are affected in this condition with great accuracy. Prior studies have shown that BoNT injections produce beneficial effects in forearm muscles, and less effect in shoulder or proximal arm muscles. Possible risks in treating patients with BoNT include excessive weakness of the injected muscles. The drug may also affect non-targeted muscles. However these risks will be minimized during the screening period by carefully targeting the affected muscles and by administering low doses of BoNT. Small booster doses may be given at follow up visit (2, 4, 14 and 16-weeks after the primary injection date) if the initial injection was insufficient to produce sufficient efficacy in relief of the focal dystonia and did not produce excess weakness of the targeted muscle.

Conditions
RECRUITING
MRgFUS Pallidotomy for the Treatment of Task Specific Focal Hand Dystonia (TSFD)
Description

The purpose of this study is to assess the safety and effectiveness of MRI-guided focused ultrasound (MRgFUS) for treating task specific focal hand dystonias (TSFD). TSFD is a type of dystonia that affects hand movements during specific tasks such as writing, playing instruments or typing, often causing involuntarily movements or cramping.

COMPLETED
fMRI Studies of Task Specificity in Focal Hand Dystonia
Description

This study will examine how the brain makes involuntary spasms and contractions in patients with focal hand dystonia (FHD). Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In FHD, only the hand is involved. The study will use functional magnetic resonance imaging (fMRI, see below) to study which areas of the brain are primarily affected in FHD and better understand how brain changes produce dystonia symptoms. Normal right-handed volunteers and patients with FHD who are 18-65 years of age may be eligible for this study. Candidates are screened with a medical history and physical and neurological examinations. Women who can become pregnant have a urine pregnancy test. All participants undergo fMRI. This test uses a strong magnetic field and radio waves to obtain images of body organs and tissues. The subject lies on a table that is moved into the scanner (a metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 90 minutes, during which time the patient is asked to lie still for 10-15 minutes at a time. During the procedure, subjects are asked to perform some tasks, including writing, tapping with their hand, and drawing in a zigzag motion. Each task is performed using the right hand, left hand and right foot.

Conditions
COMPLETED
Neurophysiology of Task-Specificity of Focal Hand Dystonia
Description

This study will examine how the brain coordinates movement in patients with focal hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. This study will use transcranial magnetic stimulation (TMS, see below) to study how the brain plans movement. Healthy volunteers and patients with focal hand dystonia 18 years of age and older may be eligible for this study. Healthy subjects may participate in one, two or three of the experiments described below. Patients with dystonia may participate in experiments one and three. Before each experiment, each subject is asked about his/her medical and neurologic history, complete questionnaires and will undergo a brief physical examination. Experiment 1 * Surface EMG: Small electrodes are taped to the skin over the arm to measure the electrical activity of muscles. * TMS: A wire coil is held on the subject's scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. During the stimulation, the subject may be asked to tense certain muscles slightly or perform other simple actions. The stimulation may cause a twitch in muscles of the face, arm, or leg, and the subject may hear a click and feel a pulling sensation on the skin under the coil. Experiment 2 (Two visits.) * Visit 1: Magnetic resonance imaging (MRI): This test uses a magnetic field and radio waves to obtain images of body tissues and organs. The patient lies on a table that is moved into the scanner (a metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 90 minutes, during which time the patient will be asked to lie still for up to 30 minutes at a time. * Visit 2: Surface EMG and TMS Experiment 3 -Surface EMG and TMS - During the TMS, subjects are asked to respond to shapes on a computer screen by pushing a button or pressing a foot petal.

Conditions
COMPLETED
Neuromodulation Therapy for Task-Specific Dystonia
Description

This study aims to apply a non-invasive brain stimulation technology called repetitive Transcranial Magnetic Stimulation (rTMS) in patients with focal hand dystonia (FHD). The goal of the study is to identify which cortical target (premotor cortex (PMC) or primary somatosensory cortex (PSC)) will show benefit after active rTMS compared to sham rTMS. A secondary goal of the study is to understand if 10 Hz rTMS can show behavioral benefit compared to sham rTMS. The study will evaluate rTMS response using measures if writing on a sensor tablet, examiner and patient dystonia rating scales and brain imaging scan (functional MRI) to understand brain changes after rTMS. Safety measures include adherence to TMS guidelines and thorough medical screening to prevent seizures.