101 Clinical Trials for Various Conditions
This phase I clinical trial is studying the side effects and best dose of IMC-A12 in treating young patients with relapsed or refractory Ewing sarcoma/peripheral primitive neuroectodermal tumor or other solid tumors. Monoclonal antibodies, such as IMC-A12, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Radiation therapy uses high-energy x-rays to damage tumor cells. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy, peripheral stem cell transplantation, and radiation therapy in treating patients with recurrent metastatic Ewing's sarcoma, peripheral primitive neuroectodermal tumor, or rhabdomyosarcoma.
This clinical trial studies genetic biomarkers from saliva samples in patients with Ewing sarcoma. Studying samples of saliva from patients with cancer in the laboratory may help doctors learn more about changes that occur in deoxyribonucleic acid (DNA) and identify biomarkers related to cancer.
This laboratory study is looking at tumor samples from patients with Ewing sarcoma. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer
This phase II trial is studying how well sorafenib works in treating patients with soft tissue sarcoma. Sorafenib may stop the growth of soft tissue sarcoma by blocking blood flow to the tumor and blocking some of the enzymes needed for tumor cell growth
Diagnostic trial to study genetic differences in patients who have Ewing's sarcoma. Genetic testing may help predict how cancer will respond to treatment and allow doctors to plan more effective therapy.
This phase II trial investigates side effects and how well donor stem cell transplant after chemotherapy works in treating pediatric and adolescent-young adults with high-risk solid tumor that has come back (recurrent) or does not respond to treatment (refractory). Chemotherapy drugs, such as fludarabine, thiotepa, etoposide, melphalan, and rabbit anti-thymocyte globulin work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells.
This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.
This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
This phase II Pediatric MATCH treatment trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.
This phase I/II trial studies the side effects and best dose of talazoparib and temozolomide and to see how well they work in treating younger patients with tumors that have not responded to previous treatment (refractory) or have come back (recurrent). Talazoparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving talazoparib together with temozolomide may work better in treating younger patients with refractory or recurrent malignancies.
This protocol will study treatment for Ewing sarcoma family of tumors (ESFT) and desmoplastic small round cell tumor (DSRCT). Participants with ESFT will be divided into two treatment groups, A or B, based on tumor characteristics. Group A (standard risk) participants have tumor that is not in the pelvis, has not spread to other parts of the body, and are less than 14 years of age. Because previous clinical trials have shown that standard treatment is very effective for children whose tumors have these characteristics, these participants will receive standard treatment. Group B (high risk) participants are 14 years of age or older or have tumor in the pelvis, or the tumor has spread to other parts of the body. Participants with DSRCT in the abdomen and/or pelvis or with tumor that cannot be removed by surgery alone or has spread to other parts of the body will be included in Group B. Participants in this group are considered high risk because there is a greater chance of tumor recurring following standard treatments currently in use. All participants will be followed and evaluated for 10 years following completion of therapy.
This pilot trial studies fluorine F 18 fluorothymidine (18F-FLT) positron emission tomography and diffusion-weighted magnetic resonance imaging in planing surgery and radiation therapy and measuring response in patients with newly diagnosed Ewing sarcoma. Comparing results of diagnostic procedures done before and after treatment may help doctors predict a patient's response and help plan the best treatment.
This pilot clinical trial studies whole-body radiation therapy, systemic chemotherapy, and high-dose chemotherapy followed by stem cell rescue in treating patients with poor-risk Ewing sarcoma. Giving chemotherapy and radiation therapy before a peripheral blood stem cell or bone marrow transplant stops the growth of tumor cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy is given to prepare the bone marrow for stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy
This phase II trial studies how well cixutumumab and temsirolimus work in treating patients with recurrent or refractory sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cixutumumab and temsirolimus together may kill more tumor cells.
This pilot clinical trial studies intensity-modulated radiation therapy (IMRT) in treating younger patients with lung metastases. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue.
This phase II trial is studying the side effects of and how well alisertib works in treating young patients with relapsed or refractory solid tumors or leukemia. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This randomized phase I/II clinical trial is studying the side effects and best dose of gamma-secretase/notch signalling pathway inhibitor RO4929097 when given together with vismodegib and to see how well they work in treating patients with advanced or metastatic sarcoma. Vismodegib may slow the growth of tumor cells. Gamma-secretase/notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vismodegib together with gamma-secretase/notch signalling pathway inhibitor RO4929097 may be an effective treatment for sarcoma.
This research study is collecting and storing samples of tumor tissue, bone marrow, and blood from patients with Ewing sarcoma. Collecting and storing samples of tumor tissue, bone marrow, and blood from patients with cancer to test in the laboratory may help the study of cancer in the future.
This laboratory study is evaluating how well dactinomycin and vincristine work in treating young patients with cancer. Studying samples of blood and urine in the laboratory from patients with cancer may help doctors learn how dactinomycin and vincristine affect the body and how patients will respond to treatment.
RATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.
This clinical trial is studying the side effects of combination chemotherapy and to see how well they work in treating patients with newly diagnosed localized Ewing sarcoma family of tumors. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) and giving the drugs in different ways may kill more tumor cells.
This pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.
This phase II trial study has a 6-patient feasibility portion studying the tolerability of chemotherapy with vincristine sulfate together with topotecan hydrochloride, cyclophosphamide, and bevacizumab in treating young patients with refractory or first recurrent extracranial Ewing's sarcoma. If the therapy is considered tolerable, this feasibility run-in will be followed by a randomized phase II portion studying giving vincristine sulfate together with topotecan hydrochloride, and cyclophosphamide to see how well it works compared with giving vincristine sulfate together with topotecan hydrochloride, cyclophosphamide, and bevacizumab in treating young patients with refractory or first recurrent extracranial Ewing's sarcoma. Drugs used in chemotherapy, such as vincristine sulfate, topotecan hydrochloride, and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop tumor growth by blocking blood flow to the tumor. Giving combination chemotherapy together with bevacizumab may kill more tumor cells.
This phase II trial is studying how well ixabepilone works in treating young patients with refractory solid tumors. Drugs used in chemotherapy, such as ixabepilone, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.
This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.
This phase I trial is studying the side effects and best dose of tanespimycin in treating young patients with recurrent or refractory leukemia or selected solid tumors. Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die.